1 Paul’s Ruby Regex Primer

Welcome to Paul’s Ruby Regex Primer'. Work through this to gain a thorough
grounding in, and introduction to, the regular expression technology built into
Ruby. The assumption is that you have ready access to irb and to a command-
line Ruby.

2 Credit When Credit is Due

The material in this document is based on very similar material from Chapter
7 of my second book: Bioinformatics, Biocomputing and Perl, as published
by Wiley in 2004. There’s also some code and examples “borrowed” from the
second edition of The PickAze.

3 Regular Expressions and Ruby

In addition to Ruby, many other programs and tools utilise regular expressions
in interesting ways. One such tool is grep, the “generalized regular expression
parser”, which can be used to search for a pattern within any selection of disk-
files. Read the manual page for grep to learn how to use it, then use grep
to search for the existence of arbitrary sequences in the your disk-files. [Be
advised that upon success and by default, grep prints the matching line to
STDOUT. Check the options, documented in the manual page, to learn how to
change this default behaviour.]

3.1 What is a regular expression?

A regular expression is, first and foremost, a pattern. The pattern tells ruby
to look for something, and this “something” can be any sequence of characters.
This pattern looks for the word “even”:

/even/

Typically, the pattern that makes up a regular expression is enclosed within
two forward-leaning slash characters, as is the case above. It is also possible to
enclose Ruby patterns within single quotes when creating a regular expression
object with Regexp.new. Alternative delimiters can also be used (more on this
later).

It is important to realize that the pattern is just a sequence of characters to
ruby. Even though “even” is a word (for us), it is four individual characters (for
ruby). Specifically, the pattern /even/ looks for the character “e”, followed by
the character “v”, followed by the character “e”, followed by the character “n”.
When the pattern is compared against something (such as an input stream or
string), it is said to match if this sequence of four characters appears. Here are
some successful matches to the /even/ pattern:

Version 1.01, September 2006

eleven # matches at end of word
eventually # matches at start of word
even Stevens # matches twice: an entire word and within a word

And here are some unsuccessful matches (or non-matches):

heaven # ’a’ breaks the pattern

Even # uppercase ’'E’ breaks the pattern

EVEN # all uppercase breaks the pattern

evelN # uppercase ’'N’ breaks the pattern

leave # not even close!

Steve not here # space between ’Steve’ and ’not’ breaks the pattern

Most regular expression technologies (and Ruby’s is no exception) are extended
by a collection of special characters, referred as a metacharacters. Metachar-
acters influence how the pattern is matched, and are described later in this
document.

Technical Commentary: The term “regular expression” is often shortened to
“regex”, and is pronounced “reg”, as in “beg”, and “ex” as in ... well, “x”.

3.2 What makes regular expressions so special?

Let’s answer this question with a demonstration. Imagine the requirement to
write a subroutine to find the first occurrence of a pattern, such as “even”,
within a given string. A reasonable strategy is to approach the problem in the
following way (note that before any processing occurs, ruby starts {rom the
beginning of the string to search and has yet to read any characters from it):

1. Examine the next character of the string.

2. If the character under consideration is not “e”, return to step 1.

[P

3. If the character under consideration is “e”, consider the next character of
the string.

[AS))

4. If the character under consideration is not “v”, go back one character
(that is, back to the found “e”), and return to step 1.

[{3)

5. If the character under consideration is “v”, consider the next character of
the string.

6. If the character under consideration is not “e”, go back two characters
(that is, back to the first found “e”), and return to step 1.

7. If the character under consideration is “e”, consider the next character of

the string.

8. If the character under consideration is not “n”, go back three characters
(that is, back to the first found “e”), and return to step 1.

Lo ”

9. If the character under consideration is “n” - rejoice! - a match has been
found.

Using a pencil and some paper, use this strategy to search for the pattern “even”
in the strings “Steven”, “heaven” and “eleven”, convincing yourself that it does
indeed work?.

Now, imagine further that a subroutine, which is based on the above strategy
and called find_it, searches a given string for a given pattern, returning “true”
upon success. The subroutine could be invoked like this:

pattern = "even"
string = "do the words heaven and eleven match?"

if find_it(pattern, string)
puts "A match was found."
else
puts "No match was found."
end # of if.

Assuming, of course, that the subroutine did indeed exist (which is does not).
The reason it does not exist is that no Ruby programmer, even the most
masochistic, would ever dream of creating a subroutine like find_it. Writ-
ing such a subroutine is tedious, tricky and totally unnecessary. The Ruby
programmer uses a regular expression, and writes the above code like this:

string = "do the words heaven and eleven match?"

if string =" /even/

puts "A match was found."
else

puts "No match was found."
end # of if.

And then the Ruby programmer promptly gets on with whatever else needs do-
ing! The requirement to write a subroutine to perform the searching is nullified.
After running the above code through irb, try the following commands:

puts $°
puts $"
puts $&

The key point of all of this is that by using a regular expression, Ruby pro-
grammers are able to specify what it is they are interested in finding, without
having to spell out how it should be found. The “how” is left to ruby, which
performs the search based on the specified regular expression. So, you use a
regular expression to specify what you want to find, not how to find it.

At first glance, many think that this is not such an important thing. How-
ever, finding things in other things is such a common occurrence that any pro-
gramming technology that makes it quick and easy is to be welcomed.

2Even though it is not the most efficient strategy. Can you think of an improvement?

Simple patterns, like “even”, are known as concatenations. To concatenate
is to link together or form a sequence of. So, any sequence of characters is a
pattern, specifically a concatenation pattern. Of course, there are other types
of patterns. Unlike concatenations, the other types of patterns are associated
with a particular patiern metacharacter.

4 Introducing The Pattern Metacharacters

In addition to concatenations, patterns can represent repetitions and alterna-
tions. It is also possible to state that a pattern may or may not be there, in
that it is optional.

4.1 The + repetition metacharacter

The + metacharacter is read as one or more of. The following regular expression
matches one or more occurrence of the letter “T”:

/T+/

Which matches any of the following:

T
TTTTTT
TT

But, does not match any of these:

t

this and that
hello
tttttttttt

This is a good place to note that it is possible to use the command-line driven
regex.rb program® to play with regular expressions. The regex.rb program
takes two arguments: a string to match against and a pattern. Note that the
pattern does not need to include the slash delimiters. If a match occurs, the
output marks where the match occurred using “chevrons”, otherwise a “no
match found” message is displayed. Here’s an example interactive session that
shows regex.rb in action:

$ ruby regex.rb ’and the Tower appeared on the horizon’ ’T+’
and the >>T<<ower appeared on the horizon

$ ruby regex.rb ’and the tower appeared on the horizon’ ’q+’
no match found

$ ruby regex.rb ’and the tower appeared on the horizon’ ’pear’
and the tower ap>>pear<<ed on the horizon

Repetitions can be combined with concatenations. This next pattern matches
“e”, followed by “1”, followed by one or more occurrences of “a”:

3Refer to the end of this document for the regex.rb source code.

/ela+/

In the above example, the repetition is said to bind more closely than the con-
catenation, in that only the letter immediately proceeding the + symbol is re-
peated. So, these strings successfully match the pattern:

elation
elaaaaaaaa

If a requirement exists to bind the repetition to more than one character (i.e.,
to a concatenation), use parentheses to indicate how many characters to repeat.
Consider this regular expression:

/(ela)+/

Now, if the combination of “e”, followed by “1”, followed by “a” occurs one or

more times, there’s a match, as with these strings:

elaelaelaela
ela

This means that the “(” and “)” characters are also metacharacters, which is
fine until a requirement exists to match either of these characters (or any other
metacharacter, for that matter). When such a requirement exists, a metachar-
acter can have its special meaning switched off by the use of the \ character
(which is known as escaping). Consider this regular expression:

/\(ela\)+/

which now matches an opening parenthesis, “(”, followed by “e”, followed by
“1”, followed by “a”, followed by one or more occurrences of the closing paren-
thesis, “)”. So, this string matches (ruby returns 0):

(ela))))))

and this does not (ruby returns nil):

(ela(ela(ela

4.2 The | alternation metacharacter

Another important metacharacter is the vertical bar, |, which indicates alter-
nation. Alternation offers choice. Here’s an example, which matches any of the
digit characters:

/0111213141516171819/

That is, the digit O or, alternatively, the digit 1 or, alternatively, the digit 2 or,
alternatively, the digit 3, and so on, up to and including the digit 9. So, if a
single digit occurs anywhere in the string, there’s a match. All of these strings
match (as they all contain at least one digit):

0123456789
there’s a 0 in here somewhere
My telephone number is: 212-555-1029

As can be imagined, looking for any digit is a common requirement, as is trying
to match any single lowercase or uppercase letter. It is possible to match any
lowercase letter with this regular expression:

/alblcldlelflglhliljlkllimInlolplglrisitiulviwlxlylz/

Just as it is possible to use this regular expressions to match any single uppercase
letter:

/AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ/

Both seem like an awful lot of work just to match a single character. And they
are. Ruby’s regular expression shorthand to the rescue!

4.3 Metacharacter shorthand and character classes

In order to reduce the amount of work required, Ruby provides the character
class, which is a shorthand notation for a long list of alternatives. Rather than
using this regular expression to match any digit:

/0111213141516171819/

it is possible to define a character class, which means the same thing, as follows:

/[01234567891/

That is, place the digits (or letters, or whatever) between the “[” and “]”
characters, to indicate a series of alternations. This regular expression:

/[aeioul/

is exactly the same as this one:

/alelilolu/

Most Ruby programmers prefer the character class version of the regular ex-
pression. When the first character of a character class is the * symbol (known
as hat), the character class is inverted. This regular expression:

/["aeioul/

matches any single character that is not one of the five vowels. The " character
can be included within a character class as a literal character by positioning it
anywhere but the first position. Ranges can also be specified within character
classes using the - symbol. This character class:

/[01234567891/

can also be written as:
/[0-91/

Which is shorter, more convenient and less prone to a typing error. As the
letters are also ranges, the long “any letter” regular expressions from earlier in
this section can be rewritten as:

/[a-z1/
which matches any single lowercase letter, and like this:
/[A-21/

to match any single uppercase letter. If a requirement exists to match a literal
“~” character, position the dash at the start of the character class:

/[-4-21/

The above regular expression now matches for any single uppercase letter or the
dash. Combining character classes defines very specific concatenations. Con-
sider this regular expression:

/ [BCFHST] [aeiou] [mty]/

which matches any three letter word that starts with an uppercase letter from
the first character class, has a vowel in the middle (the second character class)

and ends in either the letter “m”, “t” or “y” (the third character class). Each
of the following words match this regular expression:

Bat
Hit
Tot
Cut
Say

while these words do not:
Hog
Can

May
bat

Note the last word, “bat”, which almost matches, but does not as regular ex-
pressions are case-sensitive by default. To match words that start with either
an uppercase or lowercase word, rewrite the regular expression like this:

/ [BbCcFfHhSsTt] [aeiou] [mtyl/

which now allows for both “bat” and “Bat” to match.

4 Although I never make any of thsoe ... em, eh, sorry ... those.

4.4 More metacharacter shorthand

The character classes that match any single digit and any single letter (either
lowercase or uppercase) are so common that Ruby provides further convenient
shorthand related to them. Rather than using this character class to match any
single digit:

/10-91/
Ruby provides the slash-d shorthand:

/\d/

So, \d means the same as [0-9], and it is easy to remember, as “d” is short
for digit. When it comes to lowercase and uppercase letters, Ruby groups these
together with the digits and the underscore character to form the word character
class. Instead of having to specify this character class:

/[a-zA-Z0-9_1/

all that’s required is Ruby’s slash-w shorthand:
/\w/

Again, this is easy to remember, as “w” is short for word. Another special
character class is the slash-s shorthand, where “s” is short for space. This

regular expression:
/\s/
is short for this regular expression:
/07 \t\n\r\£fl/
These characters are generally referred to as the space (or whitespace) charac-
ters. Each of these special character classes (sometimes referred to as the classic

character classes) has an inverted form. To match any single character that is
not a digit, use this regular expression:

/\D/

That is, the “\D” regular expression is “\d” inverted. Likewise, “\W’ is “\w”
inverted and “\S” is “\s” inverted.

The beauty of these special shorthands becomes clear when they are seen
in action. Consider a regular expression that must match a digit, followed
by any whitespace character, followed by two word characters and then any
other character that is not a digit. Without the specials, the following regular
expression does the trick®:

/00-91[" \t\n\r\f][a-zA-Z0-9_][a-zA-Z0-9_1["0-91/
Here’s the above regular expression rewritten to use “the specials”:
/\d\s\w\w\D/

Note: less typing, less chance of error and more convenience. So, use regular
expression shorthand to reduce the risk of error.

51 think. There are an awful lot of places that I could make a mistake typing that regex!

4.5 More repetition

Character class shorthand can be combined with the repetition metacharacter
to great effect. This regular expression matches a word of any length:

/\u+/

and is read as: one or more word characters. Knowing this, the regular expres-
sion from the last section could be rewritten as:

/\d\s\w+\D/

However, this matches any number of word characters, not ezactly two as was
the requirement. Ruby provides a facility to match a specific number of oc-
currences of something. The { and } metacharacters are used to specify the
number of occurrences to match. Here’s the above regular expression rewritten
to match exactly two word characters, as required:

/\d\s\w{2X\D/

If a requirement exists to match two but not more than four word characters,
use this regular expression:

/\d\s\w{2,4}\D/

And, finally, if the requirement is to match at least two characters with no upper
limit on the number of word characters to match, use this:

/\d\s\w{2,}\D/

4.6 The ? and * optional metacharacters

The optional metacharacters are used to specify that some part of a regular
expression may or may not be there. Consider this example:

/[Bblart?/

which matches any of the following words:

bar
Bar
bart
Bart

That is, the letter “t” is optional. More correctly, Ruby programmers read the
? metacharacter as: match zero or one time. In other words, it is either there
or it is not there, it’s optional.

The * metacharacter matches zero or more times. Rewriting the above reg-
ular expression as follows has the effect of matching any number of occurrences
of the letter “t”, including not matching it at all:

/[Bblart*/

Any of the following now match this regular expression:

bar

Bart

barttt
Bartttttttttttttttttttt!!!

Note that even though the last example appends three exclamation marks,
there’s still a match, as regular expressions match anywhere in a string. Care
is needed when using the * metacharacter. Consider this regular expression,
which always matches successfully:

/p*/

When applied against any string, the p* regular expression always matches, as
the pattern is looking for zero or more occurrences of the letter “p”. If the string
matched against contains a “p”, there’s a match. Equally, if the string does not
contain a “p”, there is also a match! Remember: the * matches zero or more
times, and something - whether it is the letter “p” or anything else, for that

matter - is always not there. In this next example, the “q*” always matches:

$ ruby regex.rb "and the tower appeared on the horizon" ’q*’
>><<and the tower appeared on the horizon

4.7 The any character metacharacter

There is often a requirement to match any character, regardless of whether it is
a word, digit or whitespace character. The . metacharacter does just that:

/[Bblar./

The use of the any character metacharacter allows the above pattern to suc-
cessfully match any of these strings®:

barb

bark
barking
embarking
barn

Bart
Barry

Appending the ? optional metacharacter to the pattern, thus:
/[Bblar.?/

7

allows words such as “bar” and “Bar” to match also.

6The temptation to use the letter “f” in this example was strong, but you’ll be glad to
know I resisted.

10

5 Anchors

The last example from the last section highlights, once again, the fact that the
match is successful if the pattern is found anywhere in the string under consider-
ation. Note that “bark”, “barking” and “embarking” are all successful matches.
This can often result in patterns matching when they were not expected to,
which can sometimes be a surprise. But, what if a requirement exists to match
an entire word, such as “bark”, but not match “barking” and “embarking” (as
the word “bark” is embedded in them)?

The word boundary metacharacters allow a regular expression to be anchored
at a word boundary - that is the space between a word and something else, which
is defined as the position between “\w” and “\W”.

5.1 The \b word boundary metacharacter

To match an entire word, surround the word to be matched with the \b word
boundary metacharacter, as follows:

/\bbark\b/
This string now successfully matches:

That dog sure has a loud bark, doesn’t it?

as the word “bark” is surrounded by word boundaries, whereas this string does
not match:

That dog’s barking is driving me crazy!

The \b metacharacter has an inverse in \B, which matches at any position that
is not a word boundary. Note that this regular expression:

/\Bbark\B/

matches “embarking” but not “bark” or “barking”.

5.2 The - start-of-line metacharacter

To anchor the regular expression to the start of a string (or line), use the -
metacharacter:

/"Bioinformatics/

which states that a successful match to a string must begin with the word
“Bioinformatics”, as follows:

Bioinformatics, Biocomputing and Perl is a great book.

The next string does not match, as the match cannot be made at the start of
the string:

For a great introduction to Bioinformatics, see Moorhouse & Barry (2004).

11

5.3 The $ end-of-line metacharacter

To anchor the regular expression to the end of a string (or line), use the $
metacharacter:

/Ruby$/
which matches successfully with this string:
One of my favourite programming languages is Ruby
but not this one:
Is Ruby your favourite programming language?
A common regular expression to match against a blank line is:
/°$/

That is, the line has a start, an end, and nothing in-between: it’s blank.

6 The Binding Operators

Consider this simple program, called simplepat.rb:

#! /usr/bin/ruby -w
#
The ’simplepat.rb’ program.

while line = gets

puts "Got a blank line." if line =~ /°§/
puts "Line has a curly brace." if line =~ /[H1/
puts "Line contains ’program’." if line =" /\bprogram\b/

end # of while.

The simplepat.rb program keeps reading lines of input from STDIN until there
are no more lines to read. The line read in is assigned to the line. Three
puts method calls form the body of the loop, with each statement qualified
with an if conditional statement. Each of the if statements tries to match
to a specific regular expression against the current contents of the line”. The
binding operator, written as =~ is used to tell ruby that a regular expression is

to be applied (or bound) to a named variable. For example, this statement:
if line =~ /°$/
checks to see if the 1line variable contains a blank line. In addition to =",

there’s also a not binding operator, ' ~, which is the logical negation of =~. This
statement:

if line !~ /°$/
checks to see if line contains anything other than a blank line. The binding

operators are very useful, but really come into their own when combined with
grouping parentheses.

"The meaning of each should be clear. If they are not, you are advised to go back to the
start of this document and start again. Sigh.

12

7 Remembering What Was Matched

The grouping parentheses were introduced earlier, when they were used to group
a number of letters together so that they could be repeated:

/(ela)+/

It wasn’t mentioned then, but when the parentheses are used to group in this
way, ruby remembers the value which matched that part of the regular expres-
sion, often referred to as a subpattern. For each set of parentheses, ruby creates
a special variable to hold what matched. These special variables, often referred
to as the after-match variables, are numbered upward from 1.

Here’s a small program, called grouping.rb, which demonstrates how the
after-match variables are used:

#! /usr/bin/ruby -w
#
The ’grouping.rb’ program.

while line = gets

line =" /\w+ Q\w+) \w+ (\w+)/

puts "Second word: ’#{$1}’ on line #{$.}." if defined? $1
puts "Fourth word: ’#{$2}’ on line #{$.}." if defined? $2
end # of while.

Each line read into this program is assigned to 1ine, which is then bound against
a regular expression. The pattern looks for a word, \w+, a space, another word
which is to be remembered (note the use of parentheses), another space, another
word, another space and another remembered word®. After a successful pattern
match the two remembered values are automatically assigned by ruby to the
special variables, $1 and $2. The puts statement displays what was found
(assuming it was, note the use of defined?). Note, too, the use of the “$.”
variable, another internal Ruby variable, which contains the current line number
of the input file being processed. Try the grouping.rb program against the
ruby.data.txt data-file. It is also possible to nest parentheses. Consider the
following regex:

line =" /\w+ (Q(\w+) \w+ (\w+))/;

Can you work out what will match? As an exercise, amend the grouping.rb
program to use the above regex and re-execute against the ruby.data.txt data-
file. Did the results agree with what you expected?®

When working with nested parentheses, count the opening parentheses,
starting with the leftmost, to determine which parts of the pattern are assigned
to which of the after-match variables.

8 As you can see, it is often easier to write a regular expression using shorthand than it is
to actually describe it in words.
9Remember to display the results for the $3.

13

8 Greedy By Default

Consider this regular expression:

/(.+), Bart/

matched against this string:

Get over here, now, Bart! Do you hear me, Bart?

The pattern matches one or more of any character, .+, a literal comma, a
space character, then the word “Bart”. The parentheses ensure that anything
matched by .+ is remembered in the $1 after-match variable. After performing
the match, $1 contains this string!?:

Get over here, now, Bart! Do you hear me

This may come as a bit of a surprise, as it would be reasonable to think that
the match succeeds when the first “Bart” is encountered, not the second. A
reasonable assumption indeed, but incorrect. By default, ruby performs greedy
matching, in that an attempt is always made to match as much of the string as
possible, that is, the longest possible match. To specify that non-greedy (or lazy)
matching should be applied to part of the regular expression (or subpattern),
qualify it with the ? character:

/(.+7), Bart/

Note that the ? character when used in this way does not mean optional. It
means non-greedy. Rather than match as much as possible, this part of the
regular expression now matches as little as possible. When matched against the
string from earlier, this non-greedy regular expression remembers the following
value in the $1 after-match variable:

Get over here, now

In addition to the use of the 7 non-greedy qualifier with the + metacharacter,
it can also be used with the * metacharacter. It can also be used with the {x},
{x,y} and {x,} repetition specifiers (where “x” and “y” specify the minimum
and maximum number of matches, respectively). Being able to control when

ruby is and is not greedy is important.

9 Alternative Pattern Delimiters

The use of the / character as a regular expression delimiter suffices for most

needs. However, consider writing a regular expression to match against a string
like this:

10Tyy this is irb to confirm this behaviour.

14

/usr/bin/ruby

It is not possible to write the regular expression as follows:
[/\w+/\w+/\w+/

as ruby will treat the second / character as the end of the pattern and ignore
the \w+/\w+/\w+/ bit. Whoops! It is possible to escape the / characters that
are part of the pattern:

VAVANAAVAN LAVAN LY

to ensure that the leftmost and rightmost / characters are treated as pattern
delimiters. Unfortunately, the pattern is now harder to read and understand,
and it gets worse when each of the matched words is remembered:

TAVAQVAOAVAQN L OAVAQN cO V)

In situations such as this, Ruby allows alternative delimiters to be specified. To
use the alternative delimiters, prefix the regular expression with “%r{” and post-
fix it with “}”. The above escaped example regular expression can be rewritten
as:

hrl/\w+/\u+/\u+}
or, if the matched words are to be remembered, like so:
wrl/ \w+)/Qw+) /(\w+) }

There is now no confusion as to the inclusion of the / characters within the
regular expression: they are to be treated literally, not as delimiters.

10 And There’s More ...

Ruby regular expression technology includes much more including pattern-based
substitution, blackslash sequences and object-oriented regexes. Refer to Chapter
5 of PickAze for more details.

An excellent resource on regexes is Jeffrey E. F. Friedl’s book Mastering
Regular Expressions, 2nd Edition. Although it only contains passing references
to Ruby, it is the undisputed guide to all things regex. Highly recommended
reading.

11 The regex.rb Source Code

Here’s the complete source code to the regex.rb program:

15

#! /usr/bin/ruby -w

== Synopsis
A small ruby program which shows the user where a regex matches.

== Usage

There are two command-line arguments:
"target": the string to match against.
"regex": the pattern/regular-expression.

== Author
Paul Barry, The Institute of Technology, Carlow, Ireland.

== Copyright
Copyright (c) 2006, Paul Barry.
Licensed under GPL v2 .

H HE H H HE B HHEHHEHHEHHERH

def show_regexp(target, regex)

#
Based on the code from page 69, Programming Ruby, 2nd Edition by Dave Thomas.
#
if target =" regex
Highlight with chevrons where the successful match occurs.
"8 I>>u{suI<<H{$> 1"
else

"no match found"
end # of if.
end # of show_regexp.

target, regex = ARGV.collect { |arg|l arg } # Doing things the Ruby way ...

regex = Regexp.new(regex) # Convert to regex.
puts show_regexp(target, regex) # Show the results.

16

