The Distributed File System (DFS)

The sharing of stored information is perhaps the most
important aspect of distributed resource sharing

Introducing DFSs

* The design of large-scale wide-area read-write file storage
systems poses problems of load balancing, reliability,
availability and security

* DFSs emulate the functionality of a non-distributed file
system for client programs running on multiple remote
computers

* DFSs provide an essential underpinning for organizational
computing based on intranets

Origins of File Systems

* Abstract away the details of physical disk storage

* Originally developed to provide a convenient programming
interface to disk storage

* Access control and file-locking mechanisms are important
features

* First file servers developed in 1970s

* First distributed file systems developed in the early 1980s
(e.g., Sun's NFS)

Rationale

The concentration of persistent storage at a few servers
reduces the need for local storage and (more
importantly) enables economies to be made in the
management and archiving of the persistent data
owned by an organization

Example Storage Systems Overview

Sharing Persis- Distributed Consistency Example

tence cache/replicas maintenance

Main memory

X X X 1 RAM

File system X v X] UNIX file system
Distributed file system e v e v/ Sun NFS

Web J J/ J X Web server
Distributed shared memory v X v/ v Ivy

Remote objects (RMI/ORB) v X X 1 CORBA
Persistent object store v v X 1 CORBA Persistent

Object Service

Peer-to-peer storage system v v v 2 OceanStore
Types of consistency.

1: strict one-copy. 3: slightly weaker guarantees. 2: considerably weaker guarantees.

File System Layered Modules

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested
File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk 1/0 and buffering

Characteristics of File Systems

* File systems are responsible for the organization, storage,
retrieval, naming, sharing and protection of files.

* Files (as far as the file system is concerned) contains both
data and attributes

* File systems are designed to store and manage large
numbers of files, with facilities for creating, naming and
deleting files.

File Attribute Record Structure

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

More Characteristics

* File systems also take responsibility for the control of
access to files, restricting access to files according to users'
authorizations and the type of access requested

* The term "meta-data” is often used to refer to all of the
extra information stored by a file system that is needed for
the management of files

* The file system Is responsible for applying access control
for files

File System Operations

filedes = open(name, mode)
filedes = creat(name, mode)

status = close(filedes)
count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

pos = Ilseek(filedes, offset,
whence)

status = unlink(name)

status = link(namel, name?2)

status = stat(name, buffer)

Opens an existing file with the given name.

Creates a new file with the given name.

Both operations deliver a file descriptor referencing the open
file. The mode 1s read, write or both.

Closes the open file filedes.

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

Removes the file name from the directory structure. If the file
has no other names, it is deleted.

Adds a new name (name?2) for a file (namel).

Gets the file attributes for file name into buffer.

Key Point

The implementation of a distributed file service requires
all of the components of a traditional file system, with
additional components to deal with client-server
communication and with the distributed naming and
location of files

DFS Design Requirements

* Transparency

* Concurrent File Updates

* File Replication

* Hardware and OS Heterogeneity
* Fault Tolerance

* Consistency

* Security

* Efficiency

Transparency

* The design must balance the flexibility and scalability that
derive from transparency against software complexity and
performance

* Access transparency - clients need to be unaware of the
distribution of files, so a program designed to work on a
local file can work on a remote file without modification

* Location transparency - files or groups of files can be
relocated without changing their actual path (or file) names

Transparency, continued

* Mobility transparency - a file may be moved, either by
systems administrators or automatically

* Performance transparency - programs should continue
to perform satisfactorily, even under heavy load

* Scaling transparency - file systems can be expanded
by incremental growth to deal with a wide range of loads
and network sizes

Concurrent File Updates

* Changes to a file by one client should not interfere with
the operation of other clients simultaneously accessing
or changing the same file

* Most current file services follow modern UNIX standards
In providing advisory or mandatory file- or record-level
locking

File Replication

* Several copies of a file's contents at different locations
enable multiple servers to share the load of providing
the service

* [t enhances fault tolerance by enabling clients to locate
another server that holds a copy of the file when one
has failed

* Few DFSs support replication fully, most support a
limited form of replication and some form of caching

I Hardware and OS Heterogeneity

* The service interfaces should be defined so that client
I and server software can be implemented for different
OSes and computers
* This is an important aspect of openness

Fault Tolerance

* |t is essential that the file service continue to operate in
the face of client and server failures

* Some designs are based on at-most-once invocation
semantics

* Others support idempotent operations, ensuring that
duplicated requests do not result in invalid updates to
files

* Another important design goal is statelessness - the file
server can be restarted and the service restored after a
failure without any need to recover “previous state’

Consistency

e Traditionally, file systems have offered one-copy update
semantics

* One-copy update semantics - a model for concurrent
access to files in which the file contents seen by all of the
processes accessing or updating a given file are those that
they would see if only a single copy of the file contents
existed

* When files are replicated or cached at different sites, there is
an inevitable delay in the propagation of modifications made
at one site to all of the other sites that hold copies, and this
may result in some deviation from one-copy semantics

Security

* |n addition to access control lists, there is a need to
authenticate client requests so that access control at the
server is based on correct user identities

* There is also a need to protect the contents of request
and reply messages with digital signatures and
encryption of secret data

Efficiency

* A goal is to provide a comparable level of performance
of at least the same power and generality as
conventional file systems

* |t must also be convenient to administer, providing
operations and tools that enable system administrators
to install and operate the system conveniently

