Distributed Name Services

A distinct service that is used by client processes to
obtain attributes such as addresses of resources or
objects when given their names

Introducing Name Services

* Naming is fundamental concept in distributed systems
design

* Naming facilitates communication and resource sharing

* Names are used to refer to a wide variety of resources
such as computers, services, remote objects and files,
as well as to users

Names, Addresses, Attributes

* The term "identifier" is sometimes used to refer to
names that are interpreted only by programs

* |dentifiers are chosen for the efficiency with which they
can be looked up and stored by software

* Pure name - uninterpreted bit patterns; they have to be
looked up before they are of any use

* Non-pure name - contains information about the object
that they name, including location information

Addresses

* An object's address: a value that identifies the location
of the object rather than the object itself

* Addresses are the opposite of pure names

* Addresses are efficient for accessing object

* For example: e-mail addresses are organization or ISP
specific; change organization or ISP, and you need to
change your e-mail address

Name Resolution

* A name is resolved when it is translated into data about
the named resource

* The association is called a "binding"

* Names are - generally - bound to the attributes of the
named objects

* An attribute is the value of a property associated with an
object (with an object's address usually the key attribute)

Attribute Examples

* DNS maps domain names to the attributes of a host
computer - IP address, type of entry, TTL value for each
host entry

e X.500 maps a person's name onto attributes (including
their e-mail address and telephone number)

* CORBA's name service maps remote objects onto
remote object references

Naming and URLs

URL
DNS lookup
| Resource ID (IP number, port number, pathname)
55.55.55.55 8888 WebExamples/earth.htmi
Web server
Network address

» | file

Socket

Names and Services

* Many names are specific to some particular service

* A client uses such a name when requesting a service to
perform an operation upon a named object or resource
that it manages

* Obviously, names must be readable by and meaningful
to humans

* Given the connectivity provided by the Internet, these
naming requirements are potentially world-wide in scope

Uniform Resource Identifiers (URI)

* There's a need to identify resources on the web

* Important goal is to identify resources in a coherent way

* The advantage of uniformity is that it eases the process
of introducing new types of identifier, as well as using
existing types of identifier in new contexts, without
disrupting existing usage

* Some URIs provide information to locate a resource,
while some are used as pure resource names

Uniform Resource Locators (URL)

* URLs are reserved for identifiers that are resource

ocators

* URLs are efficient identifiers for accessing resources

* However, they suffer from the disadvantage that if a
resource is deleted or if it moves, then there may be
dangling links to the resource containing the old URL

* The wrong resource may be returned or no resource
may be returned

Uniform Resource Names (URN)

* URNs are URIs that are used as pure resource names
rather than locators

* For example, mid: 0E4FC2720-5C02-11D9-B115-
000A95B55BC8@hpl.hp.com IS @ URN that identifies the e-
mail message containing it in its Message-Id field

Name Services

* A name service stores a collection of one or more
naming contexts

* A naming contextis a set of bindings between textual
names and attributes for objects such as users,
computers, services and remote objects

* Name resolution - resolving a name, that is, to look up
attributes from a given name

Motivation for Name Services

* Unification - it is often convenient for resources
managed by different services to use the same naming
service

* Integration - it may become necessary to share and use
name resources that were created in different
administrative domains

Name Service Requirements

* |nitially quite simple - bind names to adadresses

* The interconnection of networks and the increased scale
of distributed systems have produced a much larger
name-mapping problem

* Grapevine was an early example of an extensible, multi-
domain name service, and DEC's Global Name Service
was a descendant

GNS Goals

* To handle an essentially arbitrary number of names and
to serve an arbitrary number of administrative
organizations

* A long lifetime

* High availability

* Fault isolation

* Tolerance of mistrust

Naming and Caching

* To provide satisfactory service, name services rely
heavily upon replication and caching of naming data

* Cache consistency needs not be strictly maintained

* As updates are less frequent within an established
naming service, the use of an out-of-date copy of a
name translation can generally be detected by client
software

Namespaces

* A namespace is a collection of all valid names
recognized by a particular service

* Namespaces are generally arranged as a hierarchy

* Hierarchic namespaces are potentially infinite, so they
enable a system to grow indefinitely

* An important advantage of a hierarchic namespace is
that different contexts can be managed by different
people

Example Namespace

* The DNS namespace has a hierarchic structure - a
domain name consists of one or more strings called
"name components” or "labels”, separated by the "."
delimiter

* DNS does not recognize a relative name, as all domain
names are referred to absolutely in relation to the global

root node

Naming Design Issues

* Aliases - allows for a convenient name to be substituted
for a more complicated one (providing transparency)

* Naming Domains - a naming domain is a namespace
for which there exists a single overall administrative
authority for assigning names within it (but that is free to
delegate this task, if so desirable)

* The administration of domains may be devolved to sub-
domains

Name Resolution and Replication

* An iterative process whereby a name is repeatedly

presented to naming contexts

* |t either maps a given name onto a set of primitive
attributes directly or it maps it onto a further naming

context

* Any heavily used name services shou
to achieve high availability, for examp
database subsets are replicated in at
iIndependent servers

d use replication
e, the DNS

east two failure-

Navigation

* The process of locating the naming data is called
navigation

* Name resolution software carries out navigation on
behalf of the client

* There's a distinction made between iterative and
recursive navigation

lterative Navigation

()

Name
servers

(=)

A client iteratively contacts name servers NS1-NS3 in order to resolve a name

Recursive Navigation

Non-recursive Recursive
server-controlled server-controlled

A name server NS1 communicates with other name servers on behalf of a client

Multicast Navigation

* With multicast navigation, a client multicasts the name to
be resolved and the required object type to a group of
name servers

* The server that holds the named attributes responds to
the request

* |f the name proves to be unbound, then the request is
greeted with silence

» Some technologies include a separate server to respond
to a client whenever a name is unbound

More on Caching

* |t is typical for both clients and servers to maintain a
cache of the results of previous (and recent) name
resolutions

* Caching is key to a name service's performance and
assists in maintaining the availability of both the name
service and other services despite name server crashes

* Caching by client name resolvers is particularly
successful because naming data are changed relatively
rarely

I Case Study - The DNS

database used across the Internet (and is defined in
RFC 1034)

* The original Internet naming scheme -- a centrally
maintained list that was downloaded to all sites each
aay at midnight -- did not scale, did not allow local
administrators to manage their part of the network and
only matched IP names to IP addresses (when
generality was required)

I * The Domain Name System (DNS) is the main naming

DNS Observations

* |n principle, any type of object can be named, and the
DNS architecture gives scope for a variety of
implementations

* Millions of names are bound by the Internet DNS

* Any name can be resolved by any client

* Hierarchical partitioning of the name database, as well
as replication and caching have allow the DNS to grow
to support the current Internet

Domain Names

* The Internet DNS namespace is partitioned both
organizationally and according to geography

* The "generic domains” are listed at the
http://www.iana.org WED-Site

* As well as the generic domains, each country has its own
TLD (.ie, .Uk, .us, .fr, and so on)

DNS Queries

* The Internet DNS is primarily used for simple host name
resolution and for looking up electronic mail hosts

* Reverse resolution is also possible - given an IP address,
return the "canonical” domain name associated with it

* Host information can also be provided (machine type,
operating system used) but, such information can be used
maliciously

* Well known service addresses can also be provided via the
DNS (for example: which machine runs your e-mail server?)

DNS Resource Records/Types

Record type Meaning

Main contents

A

NS
CNAME
SOA
WKS
PTR

HINFO

MX
TXT

A computer address

An authoritative name server

The canonical name for an alias
Marks the start of data for a zone
A well-known service description

Domain name pointer (reverse
lookups)

Host information

Mail exchange
Text string

IP number

Domain name for server

Domain name for alias

Parameters governing the zone
List of service names and protocols
Domain name

Machine architecture and operating
system

List of <preference, host> pairs
Arbitrary text

DNS Name Servers

* The problems of scale are treated by a combination of
partitioning the naming database and replicating/caching
parts of it close to the “points of need”

* The DNS database is distributed across a logical network
of servers

* In order that naming data are available even when a single
server fails, the DNS architecture specifies that each zone
must be replicated authoritatively in at least two servers

* Primary (master) server - reads from the local master file

* Secondary servers - download the data from the master on
a regular basis

Example DNS Name Servers

Note: Name server names are in
italics, and the corresponding
domains are in parentheses.

Arrows denote name server
entries

a.root-servers.net
(root)

uk
purdue.edu
yahoo.com

ns1.nic.uk
(uk)

ns.purdue.edu
(purdue.edu)

ns0.ja.net
(ac.uk)

*.purdue.edu

ic.ac.uk
gmw.ac.uk

des.gmw.ac.uk
.gmw.ac.uk

alpha.qmw.ac.uk ans0.dcs.qmw.ac.uk adns0-doc.ic.ac.uk
(gmw.ac.uk) (dcs.gmw.ac.uk) (ic.ac.uk)

Just How Busy are Root Servers?

Back in 1998, it was shown that some root servers
needed to be able to respond to (or serve) about 1000
queries per second

Navigation and Query Processing

* A DNS client is called a resolver

* A simple request-reply protocol is used, typically using
UDP packets on the Internet

* The resolver can be configured to contact a list of initial
name servers in order of preference in case one or more
are unavailable

DNS lterations and Recursions

* The DNS architecture allows for recursive navigation as
well as iterative

* The client resolver specifies which type of navigation is
required when contacting a name server

* However, name servers are not bound to implement
recursive navigation

* The DNS protocol allows multiple queries to be packed
into the same request message, and for name servers
correspondingly to send multiple replies in their
response messages

Example DNS Resource Records

domain name time to live class type value
1D IN NS dnsO
1D IN NS dns1
1D IN NS cancer.ucs.ed.ac.uk
1D IN MX I maill.gmul.ac.uk
1D IN MX 2 mail2.qmul.ac.uk
domain name time to live class type value
WWW 1D IN CNAME apricot
apricot 1D IN A 138.37.88.248
dcs 1D IN NS dns0.dcs
dns0.dcs 1D IN A 138.37.88.249
dcs 1D IN NS dnsl.dcs
dns1.dcs 1D IN A 138.37.94.248
dcs 1D IN NS cancer.ucs.ed.ac.uk

An Example DNS Implementation

* The Berkeley Internet Name Domain (BIND) is a popular
implementation of the server, and is typically called
"named’

* BIND allows for three categories of servers: primary,
secondary and caching-only

* Caching-only servers read in from a configuration file
sufficient names and addresses of authoritative servers to
resolve any name

* Thereatter, they only store this data and data that they learn
by resolving names for clients (that is, there's no persistent
data)

Discussing DNS

* DNS achieves relatively short average response times
for lookups, thanks to partitioning, replicating and
caching of named data

* DNS allows naming data to become inconsistent - state
data is tolerable

* The DNS does not address itself to how the staleness of
addresses Is detected

* Not designed to be the only name service in the Internet
- it can coexist with Sun's NIS and Microsoft's ADS

DNS Challenges

* |ts rigidity with respect to changes in the structure of the
namespace

e Lack of the ability to customize the namespace to suit
local needs

* Problems interfacing with DHCP

