I Interprocess Communication (IPC)

The characteristics of protocols for
communication between processes in a
distributed system

I Exploring the Middleware Layers

Applications, services

RMI and RPC and

Request Reply Protocol
Marshalling and External Data Representation

UDP and TCP

Operating System

Characteristics of IPC

* Message passing between a pair of processes
supported by SEND and RECEIVE operations

* Synchronous - sending and receiving processes
synchronize every message, and BLOCK

* Asynchronous - sending is NON-BLOCKING,
receiving can be both BLOCKING and NON-
BLOCKING

* Non-blocking receives are complex, so most
systems employ the blocking form of receive

Other IPC Characteristics

* Message destinations - typically specified as
address/port pairs (end-points)

* Reliability - both reliable and unreliable IPCs are
possible

* Ordering - often, applications require SENDER
ORDERING to be maintained

I Example IPC Mechanism - Sockets

I P d pQt EI
e x L
socket / ket
Ke

= _
client :<\ /CI server

- other ports (

message

Internet address = 138.37.94.248 Internet address = 138.37.88.249

UDP Datagram Communication

* Datagrams sent without ACKs or retries

* Message sizes are often pre-negotiated

* Fragmentation can occur

* Blocking sends and receives are common -
timeouts can be used, but these can be tricky

* Datagram discarding occurs when no receiving
process Is waiting

UDP's Failure Model

* Omission Failures - messages dropped,
checksum errors, lack of buffer space

* Both send-omissions and receive-omissions can
occur

* Qrdering - messages can arrive out-of-order

* Applications that use UDP need to provide their
own checks

Usages of UDP

* Applications that do not suffer from the
overheads associated with guaranteed message
delivery

*DNS

*VolP

Example UDP Client in Java

import java.net.*;
import java.io.*;
public class UDPClient{
public static void main(String args[])({
// args give message contents and server hostname
DatagramSocket aSocket = null;

try {
aSocket = new DatagramSocket();
byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[l]);
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(m, args[0].length(), aHost,
serverPort);
aSocket.send(request);
byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket (buffer, buffer.length);
aSocket.receive(reply);
System.out.println("Reply: " + new String(reply.getData()));
}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e){System.out.println("IO: " + e.getMessage());}

}finally {if(aSocket != null) aSocket.close();}

Example UDP Server in Java

import java.net.*;
import java.io.*;
public class UDPServer({

public static void main(String args[]){

DatagramSocket aSocket = null;
try{

aSocket = new DatagramSocket(6789);
byte[] buffer = new byte[1000];
while(true){

DatagramPacket request =

new DatagramPacket (buffer,

buffer.length);
aSocket.receive(request);

DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(), request.getPort());
aSocket.send(reply);

}

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e) {System.out.println("IO:

" + e.getMessage());}
}finally {if(aSocket != null) aSocket.close();}

TCP Streamed Communication

* Stream of bytes transferred from sender to receiver

* Characteristics of the network are hidden/transparent
to applications

* Messages sizes can be small or large

* An ACK scheme deals with lost messages

* Flow control mechanisms throttle fast senders

* Message duplication is handled, ordering is
maintained

* Message destinations are "stream end-points”

More of TCP

* When establishing communication, one side is
the client, the other is the server

* Thereafter, both can operate as peers, if needs
be

* Pairs of sockets are connected by pairs of
streams, one for input, the other for output

TCP's Failure Model

* Checksums detect and reject corrupt packets

* Sequence numbers detect and reject duplicate
packets

* Timeouts and retransmissions deal with lost
packets

* TCP is not totally reliable, as it does not
guarantee delivery of messages in the face of all
possible difficulties

TCP's Unreliability

* When a connection is broken, a process is
notified If it attempts to read or write

* Has the network failed or has the process at the
other end-point failed?

* Where are previous sent messages actually
received?

Example TCP Client in Java

import java.net.?*;
import java.io.*;
public class TCPClient {
public static void main (String args[]) {
// arguments supply message and hostname of destination
Socket s = null;
try{
int serverPort = 7896;
s = new Socket(args[l], serverPort);
DataInputStream in = new DataInputStream(s.getInputStream());
DataOutputStream out =
new DataOutputStream(s.getOutputStream());

out.writeUTF (args([0]); // UTF is a string encoding see Sn 4.3
String data = in.readUTF();

System.out.println("Received: "+ data) ;
}catch (UnknownHostException e){
System.out.println("Sock:"+e.getMessage());
}catch (EOFException e){System.out.println("EOF:"+e.getMessage());
}catch (IOException e){System.out.println("IO:"+e.getMessage());}
}finally {if(s!=null) try {s.close();}catch (IOException e)

{System.out.println("close:"+e.getMessage());}}
}

Example TCP Server in Java

import java.net.*;
import java.io.*;
public class TCPServer {
public static void main (String args[]) {
try{
int serverPort = 7896;
ServerSocket listenSocket = new ServerSocket (serverPort);
while(true) {
Socket clientSocket = listenSocket.accept();
Connection ¢ = new Connection(clientSocket);
}
} catch(IOException e) {System.out.println("Listen :"+e.getMessage());}
}
}

class Connection extends Thread {
DataInputStream in;
DataOutputStream out;
Socket clientSocket;
public Connection (Socket aClientSocket) {

try {
clientSocket = aClientSocket;
in = new DatalInputStream(clientSocket.getInputStream());
out =new DataOutputStream(clientSocket.getOutputStream());
this.start();
} catch(IOException e) {System.out.println("Connection:"+e.getMessage());}
}
public void run(){
try { // an echo server
String data = in.readUTF();
out.writeUTF (data);
} catch(EOFException e) {System.out.println("EOF:"+e.getMessage());
} catch(IOException e) {System.out.println("IO:"+e.getMessage());}
} finally{ try {clientSocket.close();}catch (IOException e){/*close failed*/}}
}

IPC and Data

External Data Representation and Marshalling

The Problem

* Running programs (processes) are represented
as (binary) data structures

* Information in messages is represented as a
sequence of bytes

* How do we transform one into the other and vice-
versa?

Flattening

* Data structures must be flattened into a
sequence of bytes before transmission and
rebuilt on receipt

* Byte-ordering (little- or big-endian?) is an issue

* Character encodings (ASCII, Unicode) are an
Issue, too

Exchanging Binary Data

*Values are converted to an agreed external
format

*Values are transmitted in the sender's format; the
recipient converts that values if necessary

* An agreed standard for the representation of data
structures and primitive values is called an
"external data representation”

Marshalling and Unmarshalling

* Marshalling - taking a collection of data items and
assembling them into a form suitable for
transmission in a message

* Unmarshalling - disassembling a message on
arrival to produce an equivalent collection of data
items at the destination

Three Alternative Approaches

* CORBA's Common Data Representation (CDR) -
can be used with a variety of programming
technologies

* Java's Obiject Serialization - works only within the
Java environment

* XML (Extensible Markup Language) - a textual
format for representing structured data that works
with any programming technology

CORBA's CDR

* CDR can represent 15 primitive types and a
range of composite types

* Both little- and big-endian support is provided -
senders indicate in which ordering the message
IS transmitted

* Floating-point numbers use the IEEE standard

* Characters are represented in a code-set agreed
between the sender and receiver

* Data type information is NOT transmitted

I CORBA CDR's Composite Types

Tyoe Renresentation

sequence length (unsigned long) followed by elements in order

string length (unsigned long) followed by characters in order (can also
can have wide characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

I CORBA CDR - Example Message

index in notes

_sequence of bytes <« 4 bytes —® on representation
03 S length of string
=T Smt Smith
R1] h___
H2=ls ~ 0 - length of string
L1612 - Lond" ‘London’
20.23 on__

L2427 1934 unsigned long

The flattened form represents a Person struct with value: {{Smith’, ‘London’, 1934}

I Marshalling in CORBA

* CORBA's Interface Definition Language (IDL) is
I used to "automatically" produce marshalling and
unmarshalling operations
*The CORBA IDL compiler enables the generation
of the required components

Example CORBA IDL

struct Person

{
string name;
string place;
unsigned long year;

Java's Object Serialization

* The term "serialization" refers to the activity of
flattening an object or a connected set of objects
into a serial form that is suitable for storing on
disk or transmitting in a message

* Consider this code :

Person p = new Person("Smith", "London", 1934);

Serialized Form of "p"

Serialized values

Person 8-byte version number | hO

3 int year java.l.ang.String- java.lang.String
name: place:

1934 5 Smith 6 London hl

Explanation
class name, version number

number, type and name of
instance variables

values of instance variables

The true serialized form contains additional type markers; hO and h1 are handles

I Extensible Markup Language (XML)

* A "markup language" refers to a textual encoding
I that represents both a text and details as to its
structure or its appearance
* HTML was designed to describe the appearance
of web pages
* XML was designed to describe structured
documents and markup languages

XML Characteristics

* XML is "extensible" in the sense that users can
define their own tags

* XML is "self-describing"

* XML was intended to be used by multiple
applications for different purposes

* XML is "textual”, so can be easily read by
humans and computers

I Example XML (Elements and Attributes)

<person 1d="123456789">
<name>Smith</name>
<place>London</place>
<year>1934</year>
<l!-- a comment -->
</person >

I More XML

* The names used in XML are user-defined and
I follow the normal naming conventions
* Binary data is (typically) represented in "base64"

I XML Parsing and Well Formed Documents

* Every start-tag has a matching end-tag
I * All tags are nested correctly
* All XML documents have a single root element
within which all other elements are enclosed
* The CDATA notation allows for the inclusion of
special characters

XML Prologs

<?XML version="1.0" encoding="UTF-8"
standalone="yes" ?>

XML Namespaces

* A set of names for a collection of element types
and attributes

* The namespace convention allows an application
to make use of multiple sets of external definitions
In different namespaces without the risk of name
clashes

Example XML Namespace

<person pers:id="123456789" xmlns:pers = "http://www.cdk4.net/person">
<pers:name> Smith </pers:name>
<pers:place> London </pers:place >
<pers:year> 1934 </pers:year>

</person>

XML Schemas

* Defines the elements and attributes that can
appear in a document

* Defines how the elements are nested, the order
and number of elements

* Defines whether or not an element is empty or
can include text

* For each element, the schema defines the type
and default value

XML Schema Example

<xsd:schema =xmlns:xsd = URL of XML schema definitions >
<xsd:element name= "person" type ="personType" />
<xsd:complexType name="personType">
<xsd:sequence>

<xsd:element name = "name" type="xs:string"/>
<xsd:element name = "place" type="xs:string"/>
<xsd:element name = "year" type="xs:positivelnteger"/>
</xsd:sequence>
<xsd:attribute name= "id" type = "xs:positiveInteger"/>

</xsd:complexType>
</xsd:schema>

Valid XML Documents

An XML document that is defined to conform to
a particular schema may also be validated by
means of that schema (using one of the many

programming APIs)

Client-Server Communication

* Normally, request-reply communication is
synchronous because the client process blocks
until the reply arrives from the server

* It can also be reliable as the reply from the server
s effectively an acknowledgment to the client

® |t is possible to build a client-server protocol over
a reliable or unreliable protocol

Avoiding Unnecessary Overhead

®* ACKs are unnecessary when requests are
followed by replies

* Establishing a connection involves (at least) two
extra pairs of messages in addition to the
request-reply messages

* Flow control is overkill, as most invocations pass
only small arguments and results

I Request-Reply Communications

I Client

Request

Server

doOperation
message

>

getRequest
select object
execute
method

message
(continuation)

sendReply

The Request-Reply Protocol

public byte[] doOperation (RemoteObjectRef o, int methodld, byte[| arguments)
sends a request message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked and the
arguments of that method.

public byte[] getRequest (),

acquires a client request via the server port.

public void sendReply (byte[| reply, InetAddress clientHost, int clientPort);

sends the reply message reply to the client at its Internet address and port.

I The Request-Reply Message Structure

messageType

requestld

objectReference

methodld

arguments

int (O=Request, 1= Reply)
int

RemoteObjectRef

int or Method

array of bytes

Request-Reply Communication
Characteristics

* What is the failure model? (Can omissions occur?
Is message ordering maintained?)

* Are timeouts employed on operations?

* How are duplicate request messages handled?

* How are lost reply messages handled?

®|s a history of requests (and replies) maintained
on either end?

ldempotent Operations

An operation is idempotent if it can be
executed one or more times without side-
effects

An Example Request-Reply
Protocol - HTTP

* Allows for the invocation of methods on web
resources

* Content negotiation is also supported

* Password-style authentication is available

How HTTP Works

* Implemented over TCP

* Initially employed a simple Connect-Request-
Reply-Close cycle

* This proved to be expensive and inefficient

* Latest version of HT TP supports "persistent
connections”

HTTP Requests and Replies

* R'n'Rs are marshalled into ASCII strings

* Resources can be byte sequences and may
be compressed

* Multipurpose Internet Mail Extensions (MIME)
supports multi-part messages of varying
formats

I HTTP Methods

*HEAD, POST, PUT, DELETE, OPTIONS and
TRACE (are the most widely supported)

I *GET (which is generally idempotent)

I HTTP Request and Reply Messages

I method URL or pathname HTTP version headers message body

GET //Www.dcs.qmw.ac.uk/index.html HTTP/ 1.1

HTTP version status code reason headers message bod
HTTP/1.1 200 OK resource data

Group Communication

The pairwise exchange of messages is rarely
the best model for communication from one
process to a group of other processes

I Group Communication - Multicasting

the sender
* Multicast messages provide a useful
infrastructure for constructing distributed systems

I * The membership of the group Is transparent to

Uses of Multicasting

* Fault tolerance based on replicated servers

* Finding the discovery service in spontaneous
networking

* Better performance through replicated data

* Propagation of event notifications

Group Communications with
IP Multicasting

*|P Multicast is built on top of IP

* The sender transmits a single IP packet to a set
of computers that form a multicast group

* The sender does not know the recipients
identities nor how big the group is

* The class D address space within IP is reserved
for IP Multicast

I Characteristics of IP Multicast

* Available with UDP only
I * Identified by an IP address/port-number “end-
point”
* Applications can join a multicast group by
opening a socket to the end-point
* Multicast address range - 224.0.0.1 through
224.0.0.255

IP Multicast's Failure Model

*Same as for UDP datagrams

* Multicasts suffer from omission failures

* Not all of the group members receive everything

* Reliable multicasting is possible - overheads are
high

Example Multicast Peer in Java

import java.net.*;
import java.io.*;
public class MulticastPeer{
public static void main(String args[]){
// args give message contents & destination multicast group (e.g. "228.5.6.7")
MulticastSocket s =null;
try {
InetAddress group = InetAddress.getByName(args[l]);
s = new MulticastSocket(6789);
S.joinGroup(group);
byte [] m = args[0].getBytes();
DatagramPacket messageOut =
new DatagramPacket(m, m.length, group, 6789);
s.send(messageOut);
// get messages from others in group
byte[] buffer = new byte[1000];
for(int i=0; i< 3; i++) {
DatagramPacket messageIn =
new DatagramPacket (buffer, buffer.length);
s.receive(messageln);
System.out.println("Received:" + new String(messageIn.getData()));
}
s.leaveGroup(group) ;
}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e){System.out.println("IO: " + e.getMessage());}
}finally {if(s != null) s.close();}

Multicasting Reliability and Ordering

* Suffers from omission failures!

* Recipients may drop messages due to full buffers

* A datagram lost at one multicast router prevents
all those routers beyond from receiving the
datagram

* A multicast router can fail

* Message ordering "errors" can result in two
routers receiving a sequence of multicasts in a
very different order to that which was sent

Cast Study - UNIX IPC

The Socket system calls layered over the
Internet TCP and UDP protocols

I Socket Datagram Communications

Sending a message Receiving a message
s = socket(AF_INET, SOCK_DGRAM, 0) s = socket(AF_INET, SOCK_DGRAM, 0)
(]
. .
Igind(s, ClientAddress) Qind(s, ServerAddress)
(] (]
sendto(s, "message"”, ServerAddress) % amount = recvfrom(s, buffer, from)

ServerAddress and ClientAddress are socket addresses

I Socket Stream Communications

Requesting a connection Listening and accepting a connection
s = socket(AF_INET, SOCK_STREAM,0) S = socket(AF_INET, SOCK_STREAM,0)
. bind(s, ServerAddress);
connect(s, ServerAddress) I.lsten(s,5),
: sNew = accept(s, ClientAddress);
(]
write(s, "message", length) Pn = read(sNew, buffer, amount)

ServerAddress and ClientAddress are socket addresses

IIPC Summary - Exchange Protocols

* The request (R) protocol - no value need be
I returned to the client
* The request-reply (RR) protocol - special ACKs
are not required, the reply and subsequent new
requests suffice as ACKs
* The request-reply-ack-reply (RRA) protocol -
used when the server maintains a history of
messages; the "ack-reply" allows the server to
remove items from its history

