
Think Security

Understanding a collection of
Useful Security Practices.

Useful Security Practices

1. Think in zones.
2. Create chokepoints.
3. Layer security.
4. Work in stillness.
5. Understand relational security.
6. Understand secretless security.
7. Divide responsibility.
8. Fail securely.

1. Think In Zones

Zoning is the process by which we define and
isolate different subjects and objects based
on their unique security.

Although primarily associated with network-
specific security, zoning can also be applied
to applications, physical areas and (even)
employee interactions.

Defining a Zone

A logical grouping of resources that have a
similar security profile.

This refers to the logical grouping of objects that
have similar:

– risks.
– trust levels.
– exposures.
– policies.
– security needs.

The Three Zones of Trust

● Trusted zone (internal) - contains the most
valuable and sensitive resources. This zone is
under the control of, and governed by the
policies of, the organization.

● Untrusted zone (external) - no direct control,
no application of policies.

● Semi-Trusted zone - still controlled by, and
under the policies of, the organization
However, the resources here are more directly
exposed. Therefore, they are more vulnerable.

Example Zone Resources

Trusted Zone:
● Network: internal servers and workstations.
● Application: trusted application code and databases.
● Physical: server rooms/communications cabinets.

Untrusted Zone:
● Network: the Internet and dial-up telephone lines.
● Application: end-users, external services/devices.
● Physical: everything outside the office/campus.

Semi-Trusted Zone:
● Network: external Web/Mail/DNS/FTP services.
● Application: untrusted 3rd party code (applets).
● Physical: lobbies, waiting rooms, public access areas.

2. Create Chokepoints

The chokepoint is a key security tool.

A tight area wherein all inbound and outbound
access is forced to traverse.

Examples: draw-bridge, front-door, firewalls,
proxies, IDSs

It is much easier to secure something if there is
only one way in and one way out.

Chokepoint Advantages

● Security Focus: focuses attention, enhances
security, less taxing on our resources.

● Ease of Monitoring: it is much easier to spot
an attacker if there is only one place to look!

● Ease of Control: easier to implement security
mechanisms when everything is localized.

● Cost Reduction: centralized security is always
cheaper than distributed solutions.

● Exposure Reduction: centralized security (if
done well) is less prone to error/exposure.

The Network Chokepoint

Most common type: used all the time.

Typically, all LAN traffic is directed through a single
inbound/outbound access point where it is filtered
and/or monitored for adherence to the organizations
security policies.

Common traffic through the network chokepoint
includes: Internet comms., VPN traffic,
vendor/partner/customer WAN comms., wireless
traffic.

The Application Chokepoint

Providing a single authorization point for
access to application services, which allows
for filtering and monitoring.

For example: the idea of ``domains'' within
Windows 2000 (XP Server).

Single sign-on/portal applications.

The Social Chokepoint

Employees, executives, partners and customers
can be exposed to attack.

This can lead to a social engineering attack.

Rather than introducing draconian measures,
social chokepoints can be introduced via
appropriate training measures and mechanisms

Applying Chokepoints

1. Identify all access points to a particular resource or
related set of resources.

2. Consolidate all such access points through a single
security object.

3. Enforce tight controls, monitoring and redundancy
on that security object.

4. Establish a policy for future access points, stating
that they must be filtered through an approved
chokepoint.

5. Continue to test and scan for new access points
that do not filter through a chokepoint.

Chokepoint Downside

Putting all your eggs into the one basket may
not be the best strategy.

The introduction of a single-point-of-failure
needs to be considered.

The introduction of a redundant/fail-over
chokepoint can help here (sometimes).

3. Layer Security

An undeniable truth: every significant
application, server, router and firewall on the
market harbours some sort of vulnerability.

Also: it is possible that devices can be
misconfigured, unmonitored and improperly
maintained.

Nothing can be 100% secure, ever!

The Layering Solution

Consider at least three layers of security:

– Internal: controls applied directly to protected
internal objects.

– Middle: primary security devices.
– External: the front-line of defense against intruders.

Scenario External Layer Middle Layer Internal Layer
Perimeter network Screening router Firewall/IDS Server-based controls
Physical security External gate Front door Internal locked cabinet

4. Work in Stillness

It is all but impossible to ``hear'' the enemy if
there is excessive surrounding noise to confuse
us.

For example: logs, although inherently useful, are
next to useless if a cracker's attack is hidden
within millions of other log entries.

There must first be stillness, if we are to make
any sense of the noise an attack makes.

Creating Stillness

The ``trick'' is to tune each device to only report that
which is of interest.

● Study the logs and alerting features of each device.
● Initially set the logging activity to be sensitive.
● Adjust settings to filter out ``normal'' activity.
● Anything else that appears can be treated as

suspicious/malicious (but may not be), and can be
blocked/filtered. Remember to document
everything.

● Logging/monitoring is then restarted in stillness.

5. Understand Relational Security

The security of any object is dependent on the
security of its related objects, and if we fail to
see these relationships, we will be unable to
properly address security.

Thus, we have Relational Security.

It is important to realize that chains of
relationships often exist within IT environments.

Three Important Chains

1. Vulnerability Inheritance: if a highly secure
system is ``connected'' to a poorly secured
system, then they are both poorly secured.

2. Chained Values and Risk: risks to a single
object must take into consideration its
relationships to other objects (shared risk).

3. Chains of Trust: when trust is extended,
exposure must be considered.

Exploiting Chains

Attackers are continually thinking in terms of
chains and are looking for the easiest and
quickest method of gaining access to an object.

Common paths of entry (exploitable chains) are:
● Direct or dial-up Internet connections.
● E-mail (networked communications).
● Partner, vendor and consultant network connections.
● Modems, remote access and VPN connections.
● Removable media (all types).
● Employees that work on multiple systems (accounts).
● New computers configured outside your environment.

Chained Privileges

Consideration should not only be given to the
subject to which we are granting access, but
also to the other subjects that have access to
that subject. If X grants access to Y, and Y is
accessible by Z, then X is somewhat accessible
by Z as well.

Such relationships must be considered when
making a security decision.

Chains: Key Points

Everything is connected to everything else.

Never consider any system safe simply because
it does not connect directly to the Internet.

Most organizations have a lack of concern when
attaching their own networks to the networks of
``trusted'' partners and vendors. Question: are
we willing to trust all of their connections as
well? And if so, by how much?

6. Understand Secretless Security

Basic security often relies on some form of secrecy.

Unfortunately, secrets are very hard to keep!

Surprisingly, the best security solutions are those that
rely as little as possible on secrecy for protection.

It should always be assumed that all secrets are going
to be discovered, sooner or later.

So, better to rely on secretless security.

Example of Secretless Security

Open Encryption Algorithms: the less secret these
are, the better they are. Secret algorithms are not
secure, nor secureable.

Open Security Applications: ``Many eyes make all
bugs shallow'', the more open the source code, the
more secure it can be made.

Secretless Authorization: avoid the use of secrets
for gaining entry. That is, no more passwords.
Examples: fingerprints, retinal scans, etc.

Passwords: A Necessary Evil

Keeping a large number of passwords secret is
extremely difficult if not impossible for large
organizations

However, passwords do appear to be the
``cheap'' option, so they are very, very popular.

A good article: ``Psst ... I Know Your Password''
from: http://zdnet.com.com/2100-1105-920092.html

7. Divide Responsibility

Don't put all your eggs in the one basket.

Never, ever, ever assign all security responsibilities to
one employee, one system or one process.

Everyone should have to request access, be required
to authenticate as well as have their actions
restricted and logged just like everyone else.

Anyone not restricted is a security threat to the IT
environment.

Practicing Division of
Responsibilities

Maintain redundant staff: dual-training, backup
employees, shadows, buddy-systems, etc.

Monitor everyone equally: universally enforce all
security measures. Enforce monitoring for all.

Enforce security rules on everyone equally: no one
should be allowed to bypass any security measure.

Always follow layered security practices (as
discussed earlier).

8. Fail Securely

Attackers commonly use exploits that cause
services to fail due to unexpected events.

When services crash, security holes can open-up.

All too often, systems are configured that, in the
event of a crash, all security is bypassed: ``Just
keep things running at all costs!!!''.

Services should be configured to fail securely.

Practicing Failing Securely

Many attacks are designed to disable a firewall or
network device, wait for an unsecured failover to
kick-in, then take advantage of the failover's
weaker security. This should be guarded against.

Potential failure scenarios need to be considered
before any new implementation occurs.

Redundant, back-up, failover services need to be
secured, too, not just the primary services!

Summary

1. Think in zones.
2. Create chokepoints.
3. Layer security.
4. Work in stillness.
5. Understand relational security.
6. Understand secretless security.
7. Divide responsibility.
8. Fail securely.

