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1 Basic Trigonometry

These definitions are required in the design of simple graphics programs and in all computer games.

1.1 Angular Measure

The most common system is degree measure in which the complete circle is divided into 360 degrees.

For more accurate measurement each degree is divided into 60 minutes and each minute is divided into

60 seconds. So, for example

25o30
′
= 25 · 5o

38o15
′
= 38 · 25o

90o15
′
25

′′
= 90 · 2569444o

A mathematically more natural unit of degree measure is the radian.

Definition 1 One radian is the angle at the centre of a circle subtended by an arc whose length is

equal to the radius.
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θ
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rθ

Arc Length = rθ

From the diagram and the above definition

rθ

r
= θ = 1 radian

The length of the circumference of a circle is given as 2πr. Hence

2πr

r
= 2π radians
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defines the number of radians in the complete circle. This gives us a relationship between the angle

measure of degrees and radians.

360o = 2π radians

180o = π radians ∗ ∗

Exercise Convert each of the following angles in degrees to radians:

90o 30o 270o 15 · 382o

Exercise Convert each of the following angles in radians to degrees:

π

2

π

4

5π

6
1 · 4π 1 radian 2 · 9 radians

Note All computer languages use only radian measure. You as a programmer will have to convert from

degrees to radians before any calculations in your programme.

1.2 Basic Trigonometrical Functions

We can define the three trigonometric functions sinα, cosα and tanα by use of a right-angled triangle.

Consider the triangle ABC
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hypothenuse

opposite

adajacent

sinα =
opposite

hypothenuse

cosα =
adjacent

hypothenuse

tanα =
opposite

adjacent
=

sinα

cosα
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Theorem 1 (Pythagoras’ theorem) In a right-angled triangle , the sum of the squares of the lengths

of the sides containing the right angle is equal to the square of the hypothenuse; i.e.

a2 + b2 = c2
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Three positive integers a, b and c such that a2 + b2 = c2 are called Pythagorean triples.

For example (3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15) are all solutions of the equation

a2 + b2 = c2

Remark In the early 1600’s, Pierre de Fermat (1601–1665), a French lawyer and mathematician posed

the following question – if the power of 2 in the above equation was replaced by 3 could there be found

three non-zero integers a, b and c that satisfy the equation a3 + b3 = c3? The same question could be

asked if the power was increased to 4 then to 5 and down to any positive integer n.

a3 + b3 = c3

a4 + b4 = c4

...

...

an + bn ̸= cn

Fermat stated that the no matter how hard you try you will never find integer solutions to these

equations. This famous statement become known as Fermat’s ‘Last’ Theorem, which was not solved

until 1994 by British-American mathematician Andrew Wiles. Wiles devoted seven years of his life

to proving the famous theorem, which may have generated more attempts at proofs than any other

theorem.
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Pierre de Fermat (1601–1665)

Fermat’s ‘Last’ Theorem states that an + bn = cn has no non-zero integer solutions for a, b and c

when n > 2. Fermat stated his theorem in 1637 when he wrote that ”I have a truly marvelous” proof of

this proposition which this margin is too narrow to contain”. Today, however, we believe that Fermat

had no such proof.

Remark Recall that there are simple exact expressions for the sine and cosine of the angles
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It follows from these right-angled triangles that

cos
π

6
=

√
3

2
, sin

π

6
=

1

2
, tan

π

6
=

1√
3
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cos
π

3
=

1

2
, sin

π

3
=

√
3

2
, tan

π

3
=

√
3

cos
π

4
=

1√
2

, sin
π

4
=

1√
2

, tan
π

4
= 1

Note

i The sine, cosine and tangent of an angle may be calculated on a scientific calculator. If the angle

measure is in degrees your calculator must be in degree mode (deg). Most calculators will default

to this mode in order to proceed. If the angle measure is in radians your calculator must be in

radian mode (rad) in order to proceed.

ii All scientific calculators inverse sine, inverse cosine and inverse tangent functions. These trigono-

metrical functions are denoted as

sin−1 , cos−1 , tan−1

Exercise Calculate each of the following, writing each answer accurate to four places of decimals:

sin 42 · 38o sin
2π

3
sin 50o sin(1 · 6) radians

[Solution: 0·6740 , 0·8660 , 0·7660 , 0·9996 ].

Exercise Find the value of A, accurate to 3 decimal places in each of the following equations:

2 cos 3B = A , when B = 10o

2A tan 5B = 0 · 5 , when B = 1 radian

2 sin(3B +
π

3
) = 5A , when B =

π

6

[Solution: 1·732 , -0·074 , 0·200 ].
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To illustrate the use of an inverse trigonometrical function consider the following example:

Example To determine the angle α when

2 sin 3α = 0 · 5 cos π
4

we have

2 sin 3α = 0 · 5 cos π
4

2 sin 3α = 0 · 35355

sin 3α = 0 · 17678

3α = sin−1 0 · 17678

3α = 0 · 17777 rad (10 · 182o)

∴ α = 0 · 05924 rad (3 · 394o)

Exercise Find the angle α, giving your answer in degrees accurate to 2 decimal places, in each of the

following equations:

2 sin 3α = 1 · 4 tan 40o

tan

(
2α− π

2

)
= 5 · 2

[Solution: 11·99o , 84·56o].
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Exercise In each of the following coordinate diagrams in R2 the triangle PQR is a right-angled triangle.

In each case, using basic trigonometry, determine the coordinates of the point R.

Q(3, 9)

RP (3, 0)

9

30o

x

y

r

r

r -

6

Q(3, 4)

RP (3, 0)

4

45o

x

y

r

r

r -

6
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Exercise In each of the following coordinate diagrams in R2 the triangle PQR is a right-angled triangle.

In each case, using basic trigonometry, determine the coordinates of the point R.

Q(3, 10) R

P (3, 0)

10

30o

x

y

r

r r

-

6

Q(4, 12)

R

P (4, 0)

12

30o

x

y

r

r
r

-

6

��
HH
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2 Vectors in Two Dimensions

A vector is an object which has magnitude and direction. Many physical quantities, such as velocity,

acceleration, force, electric field and magnetic field are examples of vector quantities. Displacement

between points may also be represented using vectors. We study some relationship between algebra and

geometry. We shall first study some algebra which is motivated by geometric considerations. We then

use the algebra later to better understand some problems in geometry. This mathematics will form the

basis of the study of computer graphics. Vectors are central to the design of any two-dimensional or

three-dimensional computer game. They are used to represent points in space, like corners of a door or

window or the location of any object in a scene. They are also used to describe a direction, for example

the orientation of a camera or the direction in which a gun is pointing.

A vector in two-dimensions R2 can be described as an ordered pair u⃗ = (u1, u2), where u1, u2 ∈ R.

Definition 2 Two vectors u⃗ = (u1, u2) and v⃗ = (v1, v2) in R2 are said to be equal, denoted by u⃗ = v⃗,

if and only if u1 = v1 and u2 = v2.

Defining vectors in R2 as ordered pairs of real numbers enables us to state precisely when two

vectors are equal – it also provides us with the easiest way of defining addition and various kinds of

multiplication. To describe the position of any point in two-dimensions we may choose two axes x and

y which are mutually perpendicular and intersect in a point O called the origin, as shown.
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(u1, u2)

O

α

u1

u2

u⃗

s
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Any point P in two dimensions corresponds the ordered pair (u1, u2) of real numbers, where u1

represents the magnitude of the component vector along x-axis and u2 represents the magnitude of the

component vector along y-axis.

The magnitude of the vector u⃗ , from Pythagoras’ theorem, is given as

∥u⃗∥ =
√

u2
1 + u2

2

The direction of the vector u⃗ is defined by α

α = tan−1

(
u2

u1

)

2.1 Addition of Vectors

Definition 3 For any two vectors u⃗ = (u1, u2) and v⃗ = (v1, v2) in R2, we define their sum to be

u⃗+ v⃗ = (u1, u2) + (v1, v2)

= (u1 + v1, u2 + v2)

Similarly, we define their difference to be

u⃗− v⃗ = (u1, u2)− (v1, v2)

= (u1 − v1, u2 − v2)

Addition of vectors may be pictured using the ‘parallelogram law’.
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Example For the following pair of vectors u⃗ = (1, 6) and v⃗ = (−5, 2) in R2, we can calculate

u⃗+ v⃗ = (1, 6) + (−5, 2)

= (−4, 8)

u⃗− v⃗ = (1, 6)− (−5, 2)

= (6, 4)

Theorem 2 (VECTOR ADDITION)

i For every u⃗, v⃗ ∈ R2, we have u⃗+ v⃗ ∈ R2.

ii For every u⃗, v⃗, w⃗ ∈ R2, we have u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗.

iii For every u⃗ ∈ R2, we have u⃗+ 0 = u⃗ where 0 = (0, 0) ∈ R2.

iv For every u⃗ ∈ R2, there exists v⃗ ∈ R2 such that u⃗+ v⃗ = 0.

v For every u⃗, v⃗ ∈ R2, we have u⃗+ v⃗ = v⃗ + u⃗.

2.2 Scalar Multiplication of Vectors

Definition 4 For any vector u⃗ = (u1, u2) in R2 and any scalar c ∈ R, we define the scalar multiple to

be

cu⃗ = c(u1, u2) = (cu1, cu2)
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Scalar multiplication may be pictured as follows –
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Example For the following pair of vectors u⃗ = (2, 3) and v⃗ = (−1, 5) in R2, we can evaluate

2u⃗+ 4v⃗ = 2(2, 3) + 4(−1, 5)

= (4, 6) + (−4, 20)

= (0, 26)

2u⃗− v⃗ = 2(2, 3)− (−1, 5)

= (4, 6)− (−1, 5)

= (5, 1)

Theorem 3 (SCALAR MULTIPLICATION)

i For every c ∈ R and u⃗ ∈ R2, we have cu⃗ ∈ R2.

ii For every c ∈ R and u⃗, v⃗ ∈ R2, we have c(u⃗+ v⃗) = cu⃗+ cv⃗.

iii For every a, b ∈ R and u⃗ ∈ R2, we have (a+ b)u⃗ = au⃗+ bu⃗.

iv For every a, b ∈ R and u⃗ ∈ R2, we have (ab)u⃗ = a(bu⃗).

v For every u⃗ ∈ R2, we have 1u⃗ = u⃗.

Exercise For the following pair of vectors u⃗ = (4,−3) and v⃗ = (1, 7) in R2, evaluate

i 3u⃗+ 3v⃗,

ii u⃗+ 2v⃗,

iii 7u⃗− 3v⃗.
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Remark There is another way in which vectors may be pictured – namely as ‘arrows’ in two dimensions.

The vector (u1, u2) can be pictured by an arrow with initial point O and terminal point (u1, u2). It is,

however, convenient to picture vectors in a more general way. Consider an arrow with the initial point

P = (x1, y1) and terminal point Q = (x2, y2). This arrow is denoted by
−−→
PQ. We define

−−→
PQ = (x2 − x1, y2 − y1)

= Q⃗− P⃗

We can picture this as follows – using the parallelogram law
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−−→
PQ
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Q −−→

P

O

P

−P

Q

x

y

Note that this vector is already represented by the arrow with initial point O and terminal point

(x2 − x1, y2 − y1). In fact, any one vector may be represented by infinitely many arrows. We define

two arrows to be equivalent whenever their corresponding components are equal – it is the components,

and not the individual initial and terminal points, which are used to see if two arrows are equivalent.

Since components are determined by the length and direction of an arrow we can state that two arrows

are equivalent whenever they have the same length and direction. Since one vector is now represented

by any one of infinitely many equivalent arrows, we agree to regard these equivalent arrows as equal.

The end result is that we may picture a vector as an arrow which has a given length and lies in a given

direction, and may be positioned between any pair of points provided that the points determine the

same length and direction.
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Example Let P = (2,−5), Q = (3,−2), R = (1, 3) and S = (−1,−3) be four points in two dimensions,

as shown.

�������*
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O

S

R

P

Q x

y

Then

−−→
PQ = (1, 3)

−−→
OR = (1, 3)

−→
SO = (1, 3)

These arrows represent the same vector, namely, A = (1, 3) and we write

−−→
PQ =

−−→
OR =

−→
SO = A = (1, 3)

Exercise In each case write the vector u⃗ in terms of components

i u⃗ is a vector from the point A(2,−5) to the point B(0, 4),

ii u⃗ is a vector from the point A(−1,−3) to the point B(5, 2),

iii u⃗ is a vector from the point A(5, 12) to the point B(−3,−6).
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2.3 Magnitude and Direction

Definition 5 For any vector u⃗ = (u1, u2) in R2, we define the magnitude of u⃗ to be the non-negative

real number

∥u⃗∥ =
√

u2
1 + u2

2

The direction of the vector u⃗ is defined by α

α = tan−1

(
u2

u1

)

�
�
�
�
�
�
�
�
�
��7

x

y

(u1, u2)

O

α

u1

u2

u⃗

s

Remark

i Suppose that P = (x1, y1) and Q = (x2, y2) are two points in R2. To calculate the distance d(P,Q)

between the two points, we must first find a vector from P to Q. This is given by (x2−x1, y2−y1).

The distance d(P,Q) is then the magnitude of this vector, so that

d(P,Q) =
√
(x2 − x1)2 + (y2 − y1)2

Hence, the definition of the magnitude (or norm) of a vector u⃗ is simply the distance from O to

the point (u1, u2).

ii A vector of magnitude 1 is called a unit vector or normalized vector. Any non-zero vector u⃗

determines a unit vector
1

∥u⃗∥
u⃗ =

(
u1

∥u⃗∥
,
u2

∥u⃗∥

)
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Example The vector u⃗ = (3, 4) has magnitude 5. This vector has direction α = 53 · 13o.

Example The vector u⃗ = (2, 5) has magnitude 5 · 385. This vector has direction α = 68 · 199o.

Example The vector u⃗ = (1, 2) has magnitude 2 · 236. This vector has direction α = 63 · 434o.

Example The vector u⃗ = (−1, 2) has magnitude 2 · 236.

A
A
A
A
A
A
A
AAK

(−1, 2)

x

y

−1

2

ϕ α

From the diagram

ϕ = tan−1

(
2

1

)
= 63 · 43o

Hence α = 180o − 63 · 43o = 116 · 57o.

Note The angle of direction α is the always quoted relative to the positive x–axis.

Example The vector u⃗ = (−2, 3) has magnitude 3 · 606. This vector has direction α = 123 · 69o.

Example The vector u⃗ = (−1,−1) has magnitude 1 · 414.

�
�

�
�

��	
(−1,−1)

x

y

−1

−1

ϕ

α
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From the diagram

ϕ = tan−1

(
1

1

)
= 45o

Hence α = 180o + 45o = 225o.

Example The vector u⃗ = (−4,−5) has magnitude 6 · 403. This vector has direction α = 231 · 34o.

Example The vector u⃗ = (−9,−12) has magnitude 15. This vector has direction α = 233 · 13o.

Remark We may be required to determine the components u1 and u2 of the vector u⃗ = (u1, u2) when

presented with the magnitude and direction of u⃗ only. If, for example, the magnitude and direction of

two distinct vectors are presented – converting each vector to components will allow for simpler addition

(subtraction or scalar multiplication) of the vectors.
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(u1, u2)

O

α

u1

u2

u⃗

s

For u⃗ = (u1, u2) we can write,

u1 = ∥u⃗∥ cosα

u2 = ∥u⃗∥ sinα

Example The vector u⃗ with magnitude 5 and direction α = 40o with positive x–axis has components

u1 = 5 cos 40o

u2 = 5 sin 40o

Hence u⃗ = (3 · 83 , 3 · 21).
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Example The vector u⃗ with magnitude 200 and direction α = 210o with positive x–axis has components

u1 = 200 cos 210o

u2 = 200 sin 210o

Hence u⃗ = (−173 · 21 , −100).

Example The vector u⃗ has magnitude 10 and direction α = 45o with positive x–axis. The vector v⃗

has magnitude 15 and direction α = 205o with positive x–axis.

Determine the magnitude and direction of each of the following vectors:

i u⃗+ v⃗

ii u⃗− 2v⃗

iii 2u⃗− 3v⃗

Solution: Let u⃗ = (u1, u2) and v⃗ = (v1, v2). Now

u1 = 10 cos 45o = 7 · 07

u2 = 10 sin 45o = 7 · 07

v1 = 15 cos 205o = −13 · 59

v2 = 15 sin 205o = −6 · 34

Hence u⃗ = (7 · 07, 7 · 07) and v⃗ = (−13 · 59,−6 · 34).

i

��������
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u⃗
u⃗+ v⃗

v⃗
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u⃗+ v⃗ = (7 · 07, 7 · 07) + (−13 · 59,−6 · 34)

= (7 · 07− 13 · 59, 7 · 07− 6 · 34)

= (−6 · 52, 0 · 73)

The vector u⃗+ v⃗ has magnitude 6 · 56 . This vector has direction α = 96 · 39o.

ii

u⃗− 2v⃗ = (7 · 07, 7 · 07)− 2(−13 · 59,−6 · 34)

= (7 · 07, 7 · 07)− (−27 · 18,−12 · 68)

= (7 · 07 + 27 · 18, 7 · 07 + 12 · 68)

= (34 · 25, 19 · 75)

The vector u⃗− 2v⃗ has magnitude 39 · 54 . This vector has direction α = 29 · 97o.

iii

2u⃗− 3v⃗ = 2(7 · 07, 7 · 07)− 3(−13 · 59,−6 · 34)

= (14 · 14, 14 · 14)− (−40 · 77,−19 · 02)

= (14 · 14 + 40 · 77, 14 · 14 + 19 · 02)

= (54 · 91, 33 · 16)

The vector 2u⃗− 3v⃗ has magnitude 64 · 15 . This vector has direction α = 31 · 13o.

Remark For computer games and graphics programming the component representation of a vector with

round (or square) brackets is used. This notation will be used in all modern computer programming

languages. In C#, for example, the DrawLine() method draws a line from one vector point (x1, y1)

to a second vector point (x2, y2) on the graphics form:

g.DrawLine(p,x1,y1,x2,y2); //Drawline method

The following lines of code from C# will draw a line from the point (100, 150) to (300, 400):

privatevoidForm1Paint(object sender, PaintEventArgs e)

{
Graphics g = e.Graphics; //The graphics class

Pen p = newPen(Color.Red); //The Pen class

g.DrawLine(p,100,150,300,400); //Drawline method

}
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3 Vectors in Three Dimensions

A vector in three-dimensions R3 can be described as an ordered triple u⃗ = (u1, u2, u3), where

u1, u2, u3 ∈ R.

Definition 6 Two vectors u⃗ = (u1, u2, u3) and v⃗ = (v1, v2, v3) in R3 are said to be equal, denoted by

u⃗ = v⃗, if and only if, u1 = v1, u2 = v2 and u3 = v3.

Defining vectors in R3 as ordered triples of real numbers enables us to state precisely when two

vectors are equal – it also provides us with the easiest way of defining addition and various kinds of

multiplication, as we will show later. To describe the position of any point in space, we may choose

three axes x, y and z which are mutually perpendicular and intersect in a point O called the origin, as

shown.

�
�

�
�

�
�

�
�

��

�
�

��

�
�

��

�
�

��

�
�
�
�
�
�
��7

s

O

u⃗

x

y

z

(u1, u2, u3)

Any point in space corresponds to the ordered triple (u1, u2, u3) of real numbers, where u1 represents

the magnitude of the component vector along x-axis, u2 represents the magnitude of the component

vector along y-axis and u3 represents the magnitude of the component vector along the z-axis.

The magnitude of the vector u⃗ , from Pythagoras’ theorem, is given as

∥u⃗∥ =
√
u2
1 + u2

2 + u2
3
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The direction of the vector in three-dimensions R3 in is defined by three angles θx, θy and θz the

vector makes with the x-axis, y-axis and z-axis respectively. For a vector u⃗ = (u1, u2, u3) in R3

u1 = ∥u⃗∥ cos θx

u2 = ∥u⃗∥ cos θy

u3 = ∥u⃗∥ cos θz

3.1 Addition of Vectors

Definition 7 For any two vectors u⃗ = (u1, u2, u3) and v⃗ = (v1, v2, v3) in R3, we define their sum to be

u⃗+ v⃗ = (u1, u2, u3) + (v1, v2, v3)

= (u1 + v1, u2 + v2, u3 + v3)

Similarly, we define their difference to be

u⃗− v⃗ = (u1, u2, u3)− (v1, v2, v3)

= (u1 − v1, u2 − v2, u3 − v3)

Addition of vectors may be pictured using the ‘parallelogram law’.
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Example For the following pair of vectors u⃗ = (8, 4,−3) and v⃗ = (−2, 2, 0) in R3, we can calculate,

for example

u⃗+ v⃗ = (8, 4,−3) + (−2, 2, 0)

= (6, 6,−3)

u⃗− v⃗ = (8, 4,−3)− (−2, 2, 0)

= (10, 2,−3)

Theorem 4 (VECTOR ADDITION)

i For every u⃗, v⃗ ∈ R3, we have u⃗+ v⃗ ∈ R3.

ii For every u⃗, v⃗, w⃗ ∈ R3, we have u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗.

iii For every u⃗ ∈ R3, we have u⃗+ 0 = u⃗ where 0 = (0, 0, 0) ∈ R3.

iv For every u⃗ ∈ R3, there exists v⃗ ∈ R3 such that u⃗+ v⃗ = 0.

v For every u⃗, v⃗ ∈ R3, we have u⃗+ v⃗ = v⃗ + u⃗.

3.2 Scalar Multiplication of Vectors

Definition 8 For any vector u⃗ = (u1, u2, u3) in R3 and any scalsr c ∈ R, we define the scalar multiple

to be

cu⃗ = c(u1, u2, u3) = (cu1, cu2, cu3)

Scalar multiplication may be pictured as follows –
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Example For the following pair of vectors u⃗ = (2, 3,−4) and v⃗ = (−1, 3, 8) in R3, we can evaluate, for

example

2u⃗+ 4v⃗ = 2(2, 3,−4) + 4(−1, 3, 8)

= (4, 6,−8) + (−4, 12, 32)

= (0, 18, 24)

2u⃗− v⃗ = 2(2, 3,−4)− (−1, 3, 8)

= (4, 6,−8)− (−1, 3, 8)

= (5, 3,−16)

Theorem 5 (SCALAR MULTIPLICATION)

i For every c ∈ R and u⃗ ∈ R3, we have cu⃗ ∈ R3.

ii For every c ∈ R and u⃗, v⃗ ∈ R3, we have c(u⃗+ v⃗) = cu⃗+ cv⃗.

iii For every a, b ∈ R and u⃗ ∈ R3, we have (a+ b)u⃗ = au⃗+ bu⃗.

iv For every a, b ∈ R and u⃗ ∈ R3, we have (ab)u⃗ = a(bu⃗).

v For every u⃗ ∈ R3, we have 1u⃗ = u⃗.

Exercise For the following pair of vectors u⃗ = (1,−3, 5) and v⃗ = (1,−2, 4) in R3, evaluate

i 2u⃗+ 3v⃗,

ii u⃗− 5v⃗,

iii 4u⃗+ 3v⃗.

Remark There is another way in which vectors may be pictured – namely as ‘arrows’ in three di-

mensions. The vector (u1, u2, u3) can be pictured by an arrow with initial point O and terminal point

(u1, u2, u3) . It is, however, convenient to picture vectors in a more general way. Consider an arrow

with the initial point P = (x1, y1, z1) and terminal point Q = (x2, y2, z2). This arrow is denoted by
−−→
PQ. We define

−−→
PQ = (x2 − x1, y2 − y1, z2 − z1)

= Q⃗− P⃗

We can picture this as follows – using the parallelogram law
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Recall that we may picture a vector as an arrow which has a given length and lies in a given direction,

and may be positioned between any pair of points provided that the points determine the same length

and direction. The following example illustrates this point.

Example Let P = (2,−5, 4), Q = (3,−2, 6), R = (1, 3, 2) and S = (−1,−3,−2) be four points in

space, as shown.
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Then

−−→
PQ = (1, 3, 2)

−−→
OR = (1, 3, 2)

−→
SO = (1, 3, 2)
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These arrows represent the same vector, namely, A = (1, 3, 2) and we write

−−→
PQ =

−−→
OR =

−→
SO = A = (1, 3, 2)

Exercise In each case write the vector u⃗ in terms of components

i u⃗ is a vector from the point A(1,−5, 4) to the point B(2, 0, 4),

ii u⃗ is a vector from the point A(1, 2, 3) to the point B(4, 5, 6),

iii u⃗ is a vector from the point A(−2, 1, 9) to the point B(3,−6, 8).

[Solution: u⃗ = (1 , 5 , 0 ) , u⃗ = (3 , 3 , 3 ) , u⃗ = (5 ,−7 ,−1 )].

Exercise Let

u⃗ = (2,−1, 3)

v⃗ = (−4, 2 · 5, 3)

w⃗ = (1, 1,−2)

Write each of the following in terms of components

i 2u⃗

ii 3u⃗− 2v⃗

iii v⃗ − 2u⃗+ 4w⃗

iv 2(u⃗+ v⃗)− w⃗

[Solution: i (4 ,−2 , 6 ) , ii (14 ,−8 , 3 ) , iii (−4 , 8 · 5 ,−11 ) , iv (−5 , 2 , 14 ) ].
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Exercise Let P = (2,−6, 8), Q = (6,−2, 5), R = (4, 4,−3), S = (−10, 2, 5) and T = (−6, 6, 2) be five

points in space, as shown.
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Show that
−−→
PQ =

−−→
OR =

−→
ST .

3.3 Magnitude and Direction

Definition 9 For any vector u⃗ = (u1, u2, u3) in R3, we define the magnitude of u⃗ to be the non-negative

real number

∥u⃗∥ =
√
u2
1 + u2

2 + u2
3

The direction of the vector in three-dimensions R3 in is defined by three angles θx, θy and θz the

vector makes with the x-axis, y-axis and z-axis respectively. For a vector u⃗ = (u1, u2, u3) in R3

cos θx =
u1

∥u⃗∥

cos θy =
u2

∥u⃗∥

cos θz =
u3

∥u⃗∥
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(u1, u2, u3)

These angles are difficult to picture, since they are not in the x–plane only or the y–plane only or

the z–plane only. For u⃗ = (u1, u2, u3) in R3, we can write,

u1 = ∥u⃗∥ cos θx

u2 = ∥u⃗∥ cos θy

u3 = ∥u⃗∥ cos θz

These equations will determine the components u1, u2 and u3 of the vector u⃗ = (u1, u2, u3) in R3

when presented with the magnitude and direction of u⃗ only.

Furthermore

cos2 θx + cos2 θy + cos2 θz = 1

Remark A vector of magnitude 1 is called a unit vector or normalised vector. Any non-zero vector

determines a unit vector

1

∥u⃗∥
u⃗ =

(
u1

∥u⃗∥
,
u2

∥u⃗∥
,
u3

∥u⃗∥

)
1

∥u⃗∥
u⃗ = (cos θx, cos θy, cos θz)

This normalised form may be used to conveniently calculate the angles θx, θy, θz for a given vector

u⃗ = (u1, u2, u3) in R3. This form is usually used to describe the direction of any vector in R3.
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Example We can write v⃗ = (2, 3, 4) as a unit vector (or normalised vector) along u⃗

1

∥u⃗∥
u⃗ =

(
u1

∥u⃗∥
,
u2

∥u⃗∥
,
u3

∥u⃗∥

)

Now ∥u⃗∥ =
√
29. Hence

1

∥u⃗∥
u⃗ =

(
2√
29

,
3√
29

,
4√
29

)
= (cos θx, cos θx, cos θx)

It follows that

cos θx =

(
2√
29

)
= 0 · 3714

cos θy =

(
3√
29

)
= 0 · 5571

cos θz =

(
4√
29

)
= 0 · 7428

Hence

θx = 68 · 20

θy = 56 · 15

θz = 42 · 03

Exercise For each of the following vectors in R3, find the angles θx, θy, θz , i.e., the angle the vector

makes with the x–axis, y–axis and z–axis respectively.

i u⃗ = (−2, 1, 1)

ii u⃗ = (1,−1, 1)

iii u⃗ = (−4,−2, 2)

[Solution: i θx = 144 · 74 o , θy = 65 · 91 o , θz = 65 · 91 o

ii θx = 54 · 74 o , θy = 125 · 26 o , θz = 54 · 74 o

iii θx = 144 · 74 o , θy = 114 · 09 o , θz = 65 · 91 o ].

Remark A very common problem in games is that an object moves a distance in a particular direction

and we have to determine where it ends up, so that we can draw it again in the new position. Suppose

that an object is at position A(1, 2, 3) in one frame and it moves 10 units in the direction θx = 75o,

θy = 50o and θz = 43 · 86o before the next frame. What is the new position in the second frame?
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Let u⃗ = (u1, u2, u3) with,

u1 = ∥u⃗∥ cos θx = 10 cos 75o

u2 = ∥u⃗∥ cos θy = 10 cos 50o

u3 = ∥u⃗∥ cos θz = 10 cos 43 · 86o

Hence u⃗ = (2 · 588, 6 · 43, 7 · 21). The new position in the second frame will be

A+ u⃗ = (1, 2, 3) + (2 · 588, 6 · 43, 7 · 21)

= (3 · 588, 8 · 43, 10 · 21)

Exercise For each of the following objects defined in frame one by a vector A, find its new position in

frame two:

i The object starts from A(2, 3, 1) and moves 7 units in the direction θx = 90o, θy = 130o and

θz = 40o.

ii The object starts from A(1, 2, 3) and moves 2 · 8 units in the direction θx = 120o, θy = 60o.

iii The object starts from A(−1, 1, 2) and moves 1 · 5 units in the direction θy = 50o, θy = 70o.

[Solution: i (2 ,−1 · 50 , 6 · 36 )
ii (−0 · 4 , 3 · 4 , 4 · 98 )
iii (0 · 03 , 1 · 96 , 2 · 51 ) ].
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3.4 The Scalar Product

Definition 10 Suppose that u⃗ = (u1, u2, u3) and v⃗ = (v1, v2, v3) are vectors in R3 and that θ ∈ [0, π]

represents the angle between them. We define the scalar product u⃗.v⃗ of u⃗ and v⃗ by

u⃗.v⃗ = ∥u⃗∥∥v⃗∥ cos θ

Alternatively, we can write

u⃗.v⃗ = u1v1 + u2v2 + u3v3

Theorem 6 (SCALAR PRODUCT)

Suppose that u⃗, v⃗, w⃗ ∈ R3 and c ∈ R, then

i u⃗.v⃗ = v⃗.u⃗

ii u⃗.(v⃗ + w⃗) = (u⃗.v⃗) + (u⃗.w⃗)

iii c(u⃗.v⃗) = (cu⃗).v⃗ = u⃗.(cv⃗)

iv u⃗.u⃗ ≥ 0

v u⃗.u⃗ = 0 if and only if u⃗ = 0

Remark

i The scalar product is also known as the dot product or the inner product of u⃗ and v⃗.

ii We say that two non-zero vectors in R3 are orthogonal if the angle between them is π
2 . It follows

immediately from the definition of scalar product that any two non-zero vectors u⃗, v⃗ ∈ R3 are

orthogonal if and only if u⃗.v⃗ = 0.

iii Using the definition of scalar product we can calculate the angle between u⃗ and v⃗ since

cos θ =
u⃗.v⃗

∥u⃗∥∥v⃗∥

Example Suppose u⃗ = (2, 4, 6) and v⃗ = (1,−2, 3) . Then

u⃗.v⃗ = u1v1 + u2v2 + u3v3

= 2.1 + 4.(−2) + 6.3

= 12
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Example Suppose u⃗ = (2, 0, 0) and v⃗ = (1, 1,
√
2) . Then we have u⃗.v⃗ = 2. Note now that ∥u⃗∥ = 2

and ∥v⃗∥ = 2. It follows that

cos θ =
u⃗.v⃗

∥u⃗∥∥v⃗∥
=

2

4
=

1

2

Hence

θ = cos−1

(
1

2

)
= 60o

Example Suppose u⃗ = (−4,−1, 1) and v⃗ = (1,−2, 5) . Then we have u⃗.v⃗ = 3. Note now that

∥u⃗∥ =
√
18 and ∥v⃗∥ =

√
30. It follows that

cos θ =
u⃗.v⃗

∥u⃗∥∥v⃗∥
=

3√
18.

√
30

=
3

23 · 24

Hence

θ = cos−1

(
3

23 · 24

)
= 82 · 58o

Example Suppose u⃗ = (2, 3, 5) and v⃗ = (1, 1,−1) . Then we have u⃗.v⃗ = 0. It follows that u⃗ and v⃗ are

orthogonal.

Exercise Let u⃗ = (2, 4,−3) and v⃗ = (8,−1,−1). Determine the scalar product u⃗.v⃗ and hence determine

the angle between u⃗ and v⃗.

Exercise Let u⃗ = (1,−2,−5) and v⃗ = (0,−1,−1). Determine the scalar product u⃗.v⃗ and hence

determine the angle between u⃗ and v⃗.

Exercise Let u⃗ = (5, 6,−9) and v⃗ = (1,−1,−1). Determine the scalar product u⃗.v⃗ and hence determine

the angle between u⃗ and v⃗.

3.5 Components and Projections

Definition 11 Let u⃗ and v⃗ be two non-zero vectors and θ the angle between them. The scalar component

of u⃗ along v⃗ is the number
u⃗.v⃗

∥v∥

* Since u⃗.v⃗ = ∥u⃗∥∥v⃗∥ cos θ, the scalar component may also be written as ∥u⃗∥ cos θ.
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The vector projection of u⃗ along v⃗, denoted by projv⃗(u⃗), is the vector defined by

projv⃗(u⃗) =

(
u⃗.v⃗

∥v⃗∥

)
v⃗

∥v⃗∥

that is, the scalar multiple of the direction of v⃗ by the scalar component of u⃗ along v⃗.

Remark

i In some applications it can be useful to decompose or resolve a vector u⃗ into two vectors – one

parallel to non-zero vector v⃗ and the other perpendicular to v⃗.
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To resolve a given vector u⃗ into two vectors – one parallel to to a given non-zero vector v⃗ and the

other perpendicular to the vector v⃗ we first calculate projv⃗(u⃗), the vector projection of u⃗ along v⃗

and secondly a perpendicular vector to v⃗, which we will label w⃗ and is given as

w⃗ = u⃗− projv⃗(u⃗)

The resolvent of projv⃗(u⃗) and w⃗ will yield u⃗. Furthermore, their scalar product is zero.

ii As the name suggests, the scalar component is a scalar and the vector projection is a vector.

iii The projv⃗(u⃗) has the same direction as v⃗ if θ is acute, and the opposite direction if θ is obtuse.

iv The length or magnitude of projv⃗(u⃗) is

∣∣∣∣ u⃗.v⃗∥v⃗∥

∣∣∣∣
that is, the absolute value of the scalar component of u⃗ along v⃗.
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Example Let u⃗ = (2,−1, 3) and v⃗ = (1,−3,−1).

To determine the vector projection of u⃗ along v⃗ we have

projv⃗(u⃗) =

(
u⃗.v⃗

∥v⃗∥

)
v⃗

∥v⃗∥

Hence

projv⃗(u⃗) =

(
2 + 3− 3√

11

)
.
(1,−3,−1)√

11
=

2

11
(1,−3,−1)

Note Consider the example above with the diagram depicting a vector projection. From the vector u⃗

we have determined projv⃗(u⃗), the vector projection of u⃗ along v⃗.
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We can determine the vector w⃗ as follows

w⃗ = u⃗− projv⃗(u⃗) = (2,−1, 3)− 2

11
(1,−3,−1) =

5

11
(4,−1, 7)

The resolvent of projv⃗(u⃗) and w⃗ should yield u⃗.

projv⃗(u⃗) + w⃗ =
2

11
(1,−3,−1) +

5

11
(4,−1, 7) =

(
22

11
,
−11

11
,
33

11

)
= (2,−1, 3)

Finally, their scalar product is zero.

projv⃗(u⃗).w⃗ =
2

11
(1,−3,−1).

5

11
(4,−1, 7) =

40

11
+

30

11
− 70

11
= 0

as expected.
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Exercise Let u⃗ = (2, 0, 1) and v⃗ = (3, 1,−2). Determine the vector projection of u⃗ along v⃗

Exercise Let u⃗ = (−1, 2, 4) and v⃗ = (0, 1,−6). Determine the vector projection of u⃗ along v⃗

Exercise Let u⃗ = (2, 2, 7) and v⃗ = (3, 6,−5). Determine the vector projection of u⃗ along v⃗

Exercise Let u⃗ = (2, 1, 2) and v⃗ = (6,−1, 0). Resolve the vector u⃗ into vectors parallel and perpendic-

ular to the vector v⃗.

Exercise Let u⃗ = (3, 4, 5) and v⃗ = (1, 1,−2). Resolve the vector u⃗ into vectors parallel and perpendic-

ular to the vector v⃗.

3.6 The Vector Product

We now discuss a product of vectors unique to R3. The idea of vector products has a wide applications

in geometry, physics and engineering, and is motivated by the wish to find a vector that is perpendicular

to two given vectors.

Definition 12 Suppose that u⃗ = (u1, u2, u3) and v⃗ = (v1, v2, v3) are vectors in R3 and that θ ∈ [0, π]

represents the angle between them. Let n⃗ be a unit vector perpendicular to both u⃗ and v⃗. Then the

vector product (or cross product) of u⃗ and v⃗ is the vector denoted by u⃗× v⃗ and defined by

u⃗× v⃗ = ||u⃗||||v⃗|| sin θn⃗

Alternatively

u⃗× v⃗ = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

Remark The vector product u⃗×v⃗ yields a vector in R3. In order to develop this component representa-

tion of u⃗× v⃗ we will switch momentarily from the component representation of a vector u⃗ = (u1, u2, u3)

to its equivalent cartesian form

u⃗ = u1⃗i+ u2j⃗ + u3k⃗

where the three unit vectors i⃗ = (1, 0, 0), j⃗ = (0, 1, 0) and k⃗ = (0, 0, 1), the unit vectors along the

x,y and z-axes respectively.
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u⃗

x

y

z

= u1⃗i+ u2j⃗ + u3k⃗

Suppose

u⃗ = u1⃗i+ u2j⃗ + u3k⃗

v⃗ = v1⃗i+ v2j⃗ + v3k⃗

u⃗× v⃗ = (u1⃗i+ u2j⃗ + u3k⃗)× (v1⃗i+ v2j⃗ + v3k⃗)

= u1v1⃗i× i⃗+ u1v2⃗i× j⃗ + u1v3⃗i× k⃗

+u2v1j⃗ × i⃗+ u2v2j⃗ × j⃗ + u2v3j⃗ × k⃗

+u3v1k⃗ × i⃗+ u3v2k⃗ × j⃗ + u3v3k⃗ × k⃗

Using each of the following facts

u⃗× v⃗ = ||u⃗||||v⃗|| sin θn⃗

u⃗× v⃗ = −(v⃗ × u⃗)

we can establish each of the following

i⃗× i⃗ = 0 i⃗× j⃗ = k⃗ j⃗ × i⃗ = −k⃗

j⃗ × j⃗ = 0 j⃗ × k⃗ = i⃗ i⃗× k⃗ = −j⃗

k⃗ × k⃗ = 0 k⃗ × i⃗ = j⃗ k⃗ × j⃗ = −⃗i

Hence, we have

u⃗× v⃗ = u1v1(0) + u1v2k⃗ + u1v3(−j⃗)

+u2v1(−k⃗) + u2v2(0) + u2v3⃗i

+u3v1j⃗ + u3v2(−⃗i) + u3v3(0)

= (u2v3 − u3v2)⃗i+ (u3v1 − u1v3)⃗j + (u1v2 − u2v1)k⃗
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Finally, returning to our component representation we have

u⃗× v⃗ = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

Remark A convenient way of determining the vector product u⃗× v⃗ is as follows

u⃗× v⃗ = det

 i⃗ j⃗ k⃗

u1 u2 u3

v1 v2 v3


Using the cofactor expansion by row 1, we have

u⃗× v⃗ = det

(
u2 u3

v2 v3

)
i⃗− det

(
u1 u3

v1 v3

)
j⃗ + det

(
u1 u2

v1 v2

)
k⃗

=

(
det

(
u2 u3

v2 v3

)
,−det

(
u1 u3

v1 v3

)
, det

(
u1 u2

v1 v2

))

= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

We will first show that the vector product u⃗× v⃗ is orthogonal to both u⃗ and v⃗.

Theorem 7

Suppose that u⃗ = (u1, u2, u3) and v⃗ = (v1, v2, v3) are vectors in R3. Then

i u⃗.(u⃗× v⃗) = 0

ii v⃗.(u⃗× v⃗) = 0

Example Suppose that u⃗ = (1,−1, 2) and v⃗ = (3, 0, 2). Then

u⃗× v⃗ = det

 i⃗ j⃗ k⃗

1 −1 2

3 0 2


=

(
det

( −1 2

0 2

)
,−det

(
1 2

3 2

)
, det

(
1 −1

3 0

))

= (−2 + 0,−(2− 6), 0 + 3)

= (−2, 4, 3)

Note that (1,−1, 2).(−2, 4, 3) = 0 and (3, 0, 2).(−2, 4, 3) = 0.
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Exercise For the vectors u⃗ = (1, 2, 3) and v⃗ = (3, 2, 1) in R3, evaluate

i u⃗× v⃗

ii v⃗ × u⃗

What comment can you make about you answer.

Theorem 8 (VECTOR PRODUCT)

Suppose that u⃗, v⃗, w⃗ ∈ R3 and c ∈ R. Then

i u⃗× v⃗ = −(v⃗ × u⃗);

ii u⃗× (v⃗ + w⃗) = (u⃗× v⃗) + (u⃗× w⃗);

iii (u⃗+ v⃗)× w⃗ = (u⃗× w⃗) + (v⃗ × w⃗);

iv c(u⃗× v⃗) = (cu⃗)× v⃗ = u⃗× (cv⃗);

v u⃗× 0 = 0;

vi u⃗× u⃗ = 0.

Now to consider an application of vector product – to evaluate the area of a parallelogram. To do

this we first establish the following result.

Theorem 9

Suppose that u⃗ = (u1, u2, u3) and v⃗ = (v1, v2, v3) are non-zero vectors in R3, and that θ ∈ [0, π]

represents the angle between them. Then

i ∥u⃗× v⃗∥2 = ∥u⃗∥2∥v⃗∥2 − (u⃗.v⃗)2

ii ∥u⃗× v⃗∥ = ∥u⃗∥∥v⃗∥ sin θ

Now consider a parallelogram below.
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v⃗

u⃗

∥u⃗∥

θ

∥v⃗∥ sin θ



40 CHAPTER 1. TRIGNOMETRY AND VECTORS 40

The base of the parallelogram is given by ∥u⃗∥, and hence the height of the parallelogram is given as

∥v⃗∥ sin θ. Therefore, from theorem 6 we can say that the area of the parallelogram is given by ∥u⃗× v⃗∥.

Theorem 10

Suppose that u⃗, v⃗ ∈ R3. Then the parallelogram with u⃗ and v⃗ as two of its sides has area ∥u⃗× v⃗∥.

Exercise Let u⃗ = (1, 1,−4) and v⃗ = (4, 1, 7) in R3.

Determine the area of the parallelogram that is defined by u⃗ and v⃗.

3.7 Scalar Triple Product

Now suppose that u⃗, v⃗, w⃗ ∈ R3 that do not lie all on the same plane. What is formed is a parallelepiped,

i.e. a solid body in which each face is a parallelogram, with u⃗, v⃗ and w⃗ as three of its edges.
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O

P

u⃗

v⃗

w⃗

v⃗ × w⃗

The base of the parallelepiped has area ∥v⃗ × w⃗∥

If the vector OP is perpendicular to the base of the parallelepiped, then OP is in the direction of v⃗× w⃗.

Now the height of the parallelepiped is equal to the norm of the orthogonal projection of u⃗ on v⃗ × w⃗.

In other words, the parallelepiped has height

projv⃗×w⃗(u⃗) =

(
u⃗.(v⃗ × w⃗)

∥v⃗ × w⃗∥

)
v⃗ × w⃗

∥v⃗ × w⃗∥

Hence, we have

∥projv⃗×w⃗(u⃗)∥ =
u⃗.(v⃗ × w⃗)

∥v⃗ × w⃗∥
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Therefore the volume of the parallelepiped is given by

V = u⃗.(v⃗ × w⃗)

Theorem 11

Suppose that u⃗, v⃗, w⃗ ∈ R3. Then the parallelepiped with u⃗, v⃗ and w⃗ as three of its edges has volume

u⃗.(v⃗ × w⃗).

Definition 13 Suppose that u⃗, v⃗, w⃗ ∈ R3. Then u⃗.(v⃗× w⃗) is called the scalar triple product of u⃗, v⃗ and

w⃗.

Remark It follows from theorem 9 that three vectors in R3 are coplanar if and only if their scalar

triple product is zero.

Example Suppose that u⃗ = (1, 0, 1), v⃗ = (2, 1, 3) and w⃗ = (0, 1, 1). Then

u⃗.(v⃗ × w⃗) = det

 1 0 1

2 1 3

0 1 1

 = 0

Hence u⃗, v⃗ and w⃗ are coplanar.

Example The volume of the parallelepiped with u⃗ = (1, 0, 1), v⃗ = (2, 1, 4) and w⃗ = (0, 1, 1) as three of

its edges are given by

V = u⃗.(v⃗ × w⃗) = det

 1 0 1

2 1 4

0 1 1

 = −1

We take the absolute value 1.

Exercise Let u⃗ = (2, 1, 3), v⃗ = (4,−1, 0) and w⃗ = (2, 0, 1).

Show that u⃗, v⃗ and w⃗ are coplanar.

Exercise Let u⃗ = (5λ, 2λ, 3), v⃗ = (1, 1, 0) and w⃗ = (0, 2,−1).

For which values of λ are these vectors coplanar?
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3.8 Some Exercises

Exercise Consider the following vectors u⃗ = (1, 2, 3) and v⃗ = (3, 2, 1) in R3.

i Evaluate u⃗− 4v⃗

ii Evaluate u⃗.v⃗

ii Determine ||7u⃗− 2v⃗||

iv Determine u⃗× v⃗.

v Determine the vector projection of u⃗ along v⃗, i.e., projv⃗(u⃗)

Exercise Consider the following vectors u⃗ = (1, 0, 1), v⃗ = (2, 1, 3) and w⃗ = (0, 1, 1) in R3.

i Evaluate u⃗− 4v⃗ + 2w⃗

ii Determine ||7u⃗− 2v⃗||

iii Evaluate u⃗.v⃗

iv Determine the angle θ between u⃗ and v⃗.

v Determine the vector projection of u⃗ along v⃗, i.e., projv⃗(u⃗)

vi Calculate the components a, b and c of some non-zero vector that is orthogonal to u⃗ and v⃗.

vii Determine the area of the parallelogram that is defined by u⃗ and v⃗.

viii Determine u⃗.(v⃗ × w⃗). What comment can you make about the vectors u⃗, v⃗ and w⃗?

Exercise Find the interior angles α, β, γ of a triangle ABC whose vertices are the points

A(−1, 0, 2) , B(2, 1,−1) , C(1,−2, 2)
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Exercise Consider the following points in R3.

P (1, 2,−3) , Q(3, 2, 1) , R(4, 0,−2)

x

y

z

b

b

b

P

R

Q

β

γ

α

i Evaluate P − 2Q+ 3R.

ii Determine ||2P − 4Q||.

iii Evaluate P.Q, i.e., the scalar product of P with Q.

iv Evaluate P ×Q.

v Show that the vectors defining this triangle △PQR are coplanar.

vi Determine all internal angles α, β, γ of the triangle △PQR.

vii Determine the area of the triangle △PQR.
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Exercise Consider the following points in R3.

P (2, 3, 4) , Q(1, 2,−1) , R(4, 10,−4)

x

y

z

b

b

b

P

R

Q

β

γ

α

i Evaluate P − 2Q+ 3R.

ii Determine ||2P − 4Q||.

iii Evaluate P.Q, i.e., the scalar product of P with Q.

iv Evaluate P ×Q.

v Show that the vectors defining this triangle △PQR are coplanar.

vi Determine all internal angles α, β, γ of the triangle △PQR.

vii Determine the area of the triangle △PQR.


