
Facial Recognition Access Control System
Project Report

by

Hoda Ahmed;
Student ID: C00214991

April 20, 2020

1

Abstract

The purpose of this Final Project document is to provide a description of the final
status of the project. The document will contain an introduction to the project, a detailed
description of the submitted project, as defined by the specification and design documents.
The document also contains the learning achievements and an overall review of the project.

Contents

1 Introduction 4

2 Project Description 4
2.1 Overview & Description . 4
2.2 System Components . 5

2.2.1 Hardware Components . 5
2.2.2 Software Components . 5

2.3 System Architecture . 6
2.4 Desktop Application User Interface . 7
2.5 Web Application User Interface . 21

3 Conformance to Specification and Design 24

4 Learning Outcomes 25
4.1 Technical Achievements . 25

4.1.1 Electronic Circuits . 25
4.1.2 Python . 25
4.1.3 Flask, Jinja2 & Bootstrap . 25
4.1.4 Raspberry Pi . 25
4.1.5 PyQt . 26

5 Project Review 27
5.1 Positive Aspects/Aspects Achieved . 27
5.2 Aspects Not Achieved . 27
5.3 Aspects Gone Wrong . 27
5.4 Things I Would Change . 27
5.5 Problems Encountered . 28

6 Future Features 29

7 Acknowledgements 29

3

1 Introduction

The following document will provide a detailed description of the overall progress and final status
of the Facial Recognition Access Control project undertaken by the author.
The project description will cover a detailed outline of the features and functionalities that
the project aimed to satisfy, including hardware, software and user interfaces. Description of
conformance to specification will discuss the final outcome of the project with regards to the
initial proof of concept and anticipated design of the project.

2 Project Description

2.1 Overview & Description

The facial recognition access control system is a system that uses multi-factor authentication,
including biometric authentication, to grant users access to equipment rooms. The system will
be used to control unauthorized access to equipment rooms in corporate buildings, through a
Raspberry Pi computer.
This system will use Amazon AWS Rekognition API to process users’ faces and determine whether
they should be granted access to the rooms or not.

The system will also keep a log of the users that have been granted access to the rooms and the
date/time at which the room was accessed. Denied access to users will also be logged. Admin-
istrators will be able to view these logs and view user information and other related information
through the web application that will be created. The web application may also be used by
normal users to update their information and view their own access logs.

The system is centred around the Raspberry Pi computer, which will carry out most of the
functionalities of the system. The Raspberry Pi has a desktop application installed on it, through
which users can login and register to access the room. The Raspberry Pi also controls the lock,
by providing it with power to pull back/release its tongue, hence unlocking the door and granting
access to users.
A Flask webserver also runs on the Raspberry Pi, and it allows administrators to log into it and
view the access logs that have been attempted since the launch of the system. This also includes
failed login attempts.

As explained thoroughly in the Research Document for the Facial Recognition Access Control
System, there are a few solutions that already exist in the market that offer the same service
offered by this project. However, the unique aspect about this FRACS project is that it offers
access control, taking into consideration both security and privacy. The other solutions that exist
in the wild integrate facial recognition into their full monitoring suite, storing captured images
and videos, and not fully considering the privacy of the system users. This is not the case for
FRACS, as the only information stored on them is a face ID, and the image captured is stored
only for the duration of the processing and is permanently deleted after. And this is a great
advantage to us.

4

2.2 System Components

2.2.1 Hardware Components

The hardware components of the FRACS project have been examined in detail in the Functional
Specification document, section 2.3.1. These components that are used in the FRACS project
are the following:

• Raspberry Pi: The Raspberry Pi is a small-sized computer that is mainly used for learning
computer-related material. It is the central component of the whole project, where the
desktop application is installed. It is designed for users to enter their credentials to verify
themselves. The Raspberry Pi will also be responsible for providing power to the physical
lock that will be attached to it.
The Raspberry Pi has a GPIO board that’s outline below, with the purpose of each pin in
the described in the image.

• Raspberry Pi camera: The camera provides the capability of taking pictures. It will be
attached to the Raspberry Pi to capture the user’s face trying to access the equipment
room.

• LCD touchscreen: This touchscreen will provide the user interface and will be the inter-
active point for the user.

• Solenoid lock: The solenoid lock will be responsible for locking/unlocking the door of the
equipment room. It will be attached to and controlled by the Raspberry Pi, by receiving
power from it and unlocking the door when given a signal and when the door is expected
to unlock.

• Relevant cables and connectors: e.g. for connecting Raspberry Pi to LCD touchscreen,
Raspberry Pi to solenoid lock, and solenoid lock to door.

2.2.2 Software Components

• Rekognition API: API to be used for all the facial recognition operations e.g. face
detection, normalization, feature extraction etc.

• Twilio SMS API: As mentioned previously, the FRACS project harnesses the Twilio
PaaS to send SMS messages when an admin is attempting to register a new user. When
an account is registered to Twilio, it receives an account SID and an authentication token.
Using these credentials and when the Raspberry Pi is triggered, it sends an SMS code via
HTTP to Twilio’s servers, who forward the message in SMS format to the admin’s phone.

• Flask Server: Flask is a microframework, used for building web applications. This frame-
work was considered the best option for development on this project, as it is extremely
lightweight, and is specifically for Python, which is a core development language of the
Raspberry Pi. This Flask webserver runs on the Raspberry Pi, and it presents administrators
with the access logs for FRACS.

5

2.3 System Architecture

Figure 1: FRACS System Architecture

The facial recognition access control system is centered around the Raspberry Pi which is
situated in a strategic position in the system. Most of the interactions of the system are carried
out with/on/using the Raspberry Pi.

As outlined in the diagram above, the user interacts with the LCD touchscreen to trigger the
starting of the desktop application on the Raspberry Pi and logs in by entering their credentials.
Following this, the camera is activated, and it takes a picture of the user. That picture is then
stored on the Raspberry Pi which carries out the API calls to AWS Rekognition, sending the
picture as a HTTP request. Once the API received the HTTP request, it detects the face in
the image, extracts the facial features and stores it in a vector. That vector is compared against
the existing vectors in the database to check whether a use exists (and is authorized to enter)
or not. The result is returned to Raspberry Pi as a HTTP response, and it contains a face ID
of the person. Once it receives the face ID, the Raspberry Pi checks for it in the local database
along with the credentials entered at the start by the user. If the face ID/credentials combination
exists, the Raspberry Pi sends a signal to the lock, triggering it, and unlocks the room for the
user. The Raspberry Pi also records a new access entry in the logs database. However, if the
face ID/credentials combination doesn’t exist, then the user is denied access and a failed access
attempt is also logged.

6

2.4 Desktop Application User Interface

Figure 2: FRACS Desktop App - Home

The home page is designed with a catchy, yet calm background. It is a splash screen that
appears for only 3 seconds, before displaying the main menu, where users can choose whether
to login or register.

7

Figure 3: FRACS Desktop App - Main Menu

8

Figure 4: FRACS Desktop App - Login

9

Figure 5: FRACS Desktop App - Camera Page

After clicking on this screen/tapping on it, a camera preview is displayed to the user, along
with a countdown of 3. After the countdown is over, the camera preview captures an image and
carried out the respective functionalities.

10

Figure 6: FRACS Desktop App - Login Success

The above screen will display to the user in the event that their login attempt is successful.
This is shown when the login credentials and the face ID match.

11

Figure 7: FRACS Desktop App - Login Fail

The above screen will display to the user in the event that their login attempt is NOT
successful. This is shown when the login credentials and the face ID DON’T match.

12

Figure 8: FRACS Desktop App - Login Fail 2

The above screen will display to the user in the event that the camera cannot detects any
faces in the image captured.

13

Figure 9: FRACS Desktop App - Login Fail 3

The above screen will display to the user in the event that the camera cannot identify the
user face detected in the image captured.

14

Figure 10: FRACS Desktop App - Login Fail 4

The above screen will display to the user in the event that the camera detects more than one
face in the image captured.

15

Figure 11: FRACS Desktop App - SMS Code

Admin enters the SMS code they received to their phone here to verify themselves when they
wish to register a user.

16

Figure 12: FRACS Desktop App - Registration

New user enters their information here to be stored to the local database, and then the
camera is started so that they can get their face scanned and detected.

17

Figure 13: FRACS Desktop App - New User SMS Code

18

Figure 14: FRACS Desktop App - Registration Success

19

Figure 15: FRACS Desktop App - Registration Fail

20

2.5 Web Application User Interface

Login Page

Figure 16: FRACS Web App - Login

Dashboard

Figure 17: FRACS Web App - Dashboard

21

Users List

Figure 18: FRACS Web App - Users List

Logs List

Figure 19: FRACS Web App - Logs List

22

Current User Profile

Figure 20: FRACS Web App - User Profile

23

3 Conformance to Specification and Design

In this segment of the document, I will contrast the submitted proposal and specifications with
the project as it is today.
Overall, the final project submission conforms almost precisely to what was intended in the ini-
tial proposal and subsequent final specification. All of the core functionality is provided in the
desktop application.

Initially, at the start of development and during one of the discussions with my supervisor,
James Egan, we thought of including a motion sensor in the project, that would automatically
start the desktop application on the Raspberry Pi, once a user appears in front of the camera.
After further discussions and meetings, we came to the conclusion that this ”feature” was a little
unnecessary. This is for a number of reasons: 1. depending on where the camera is placed, there
will be movement around, hence, triggering the motion sensor will be a continuous action; and
2. it is best to let the user interact with the system as much as possible, so that they can login
and register.

24

4 Learning Outcomes

I have to admit that there were a lot of learning outcomes that resulted from researching and
working on this project for more than 5 months. From the very beginning, I wanted to push my
boundaries and expand my horizons in terms of technologies I am familiar with. Having nearly
zero experience with Python prior to working on this project was a huge factor that led to a delay
in project development.
Electronic circuits were also extremely challenging. I must mention that the burnt LCD touch-
screen and old Raspberry Pi, as a result of a poorly set up electronic circuit, lead me to understand
how complex and dangerous these circuits are.
However, I believed that this was the best chance to pick up on new technologies, as support
and guidance from lecturers was sought and was generously provided.

4.1 Technical Achievements

As previously stated, I have nearly zero experience in Python, electronic circuits and working
with Raspberry Pi’s. However, learning some technologies and becoming familiar with them were
harder than other technologies and had a steeper learning curve.

4.1.1 Electronic Circuits

There were a few sources for me that helped with learning electronic circuits. The most mem-
orable and convenient source was an Electronics Engineering lecturer, who teaches at Institute
of Technology Carlow. I met twice with the said lecturer, where he explained to me how basic
circuits work and as a way to get started, assisted me in getting a simple LED to flash using the
Raspberry Pi. I later took this example and altered it, replacing the LED with the solenoid lock
and attaching a battery to see if it would work.

4.1.2 Python

Python was not too difficult to learn and definitely didn’t have a learning curve as steep as
electronic circuits. To learn Python, I took an online course on CodeCademy.com:

https://www.codecademy.com/learn/learn-python

While time did not allow me to complete this course, the time that was invested into it gave me
the confidence to move forward with my project, and start developing right away.

4.1.3 Flask, Jinja2 & Bootstrap

Using Flask gave me insights on how easy web development can become if using the right
frameworks. Jinja2, the Python template engine used to create HTML, amazed me because of
how simple it made the backend-frontend transition proceed smoothly. Like electronic circuits,
Flask took a long time to understand and personally, out of all the new technologies I came
across, it had the steepest learning curve.

4.1.4 Raspberry Pi

Although it is very different from a Raspberry Pi, I have little experience with Arduino boards.
This noted, it did help me to a certain extent in understanding how a Raspberry Pi works,
especially it’s GPIO board (general purpose input/output board).

25

4.1.5 PyQt

With only a very small amount of background in desktop application development using Java
AWT & Swing, PyQt was very challenging to grasp. I am grateful that Qt Designer exists, as it
was a very important source for learning PyQt development, and not just to develop.

26

5 Project Review

This segment of the document will review aspects of the project that went positively and nega-
tively.

5.1 Positive Aspects/Aspects Achieved

Personally, I would consider the entire project a success. All the core functionalities that were
defined at the start are completed, except for a few minor parts. Opposite to what I thought,
assembling the lock and attaching it to the Raspberry Pi and the battery took less than a day,
and it was, unexpectedly, successful (wait for a small surprise in the Aspects Gone Wrong section
of this document).

Midway during development I thought that I would not be able to finish the Desktop appli-
cation thoroughly because of how slow my progress was and how much time was invested in
other college projects. However, I was proven wrong, and the only part of the project that was
completed to the full was the desktop application.

5.2 Aspects Not Achieved

Designing a FRACS mobile application was on the bucket list for this project, but being wary of
the limited time and the amount of information I will need to absorb to use the new technologies,
I predicted that I will not be able to create the said mobile app.

5.3 Aspects Gone Wrong

While testing the functionality of the solenoid lock for the project, I accidentally pulled out the
ground wire, which lead to a (disappointing) burning of the LCD touchscreen and the Raspberry
Pi. Fortunately, I had a spare Raspberry Pi so it replaced the burnt one, and I had to buy a new
LCD touchscreen. Nevertheless, the lesson was taught - properly secure all wires, and ALWAYS,
remove the ground wire last, after plugging out everything else from the Raspberry Pi4.

5.4 Things I Would Change

If I had the chance to start working on this project from the start, there are a few things I would
change to make it work better.

• Time management & development inconsistency: The main problem I faced while
working on the FRACS project is time management. At the start there was a lack of
consistency from the development side. I would begin a task and after a short while put
it aside and begin another task, without finishing the first task. What made it worse was
the fact that I interchangeably worked on different tasks using different technologies e.g.
first task was the GUI for desktop application, while second task was backend for web
application. // I would change this, and be sure to finish off one task first before moving
to the other.

• Early start: I have started development mid-December 2019. This may seem like enough
time to finish the project on time, however, I should have kept in mind other deadlines and

27

submissions for other modules in college. Due to working on different projects and assign-
ments at the same time, progress on the FRACS project was extremely slow. Eventually,
mid-March 2020, I was able to get back on track again and follow the project plan set out
in the Design Manual document.
If I could restart my project again, I would start development a month earlier, to give
myself extra time to think about other features that I can include in the project, as well as
add new valuable features.

• Do more research on Flask & Web Development: Web development is one of the
things I really dislike working on, but using Flask made me realize that it isn’t as bad as I
thought. The plan I had set out to learn more about Flask and how to use it specified a
short period of time. I believe that if I had spent more time learning Flask, I would have
produced a more enhanced version of the web application.

5.5 Problems Encountered

As expected, there were a lot of problems encountered during the development of the FRACS
project.

I decided to start development of the GUI on laptop first, to get a feel of what PyQt devel-
opment is like. However, for some unknown reason, MySQL would not work on the laptop and
would display an error. To get around this problem, I decided to use a Linux virtual machine
instead to get started. Not surprised that another issue had appeared, there was a problem with
the VM accessing the laptop camera, so I had to use a static image instead of using the camera
in realtime. This was a problem as I couldn’t work with the application like how it would work
natively on the Raspberry Pi.

28

6 Future Features

As explained above, there was a plan to make a mobile application for admins, which was going
to be an easier and more convenient method of viewing access logs and user information. As
mentioned above, also, this was not a confirmed plan - I was convinced that time will not suffice
to produce a mobile application.

Therefore, for the future features, I am planning to introduce a mobile application to make
life easier for admins.

There was also another future feature that was discussed with my supervisor, James, and it
was to add another layer of security to the system, by using another kind of biometric authenti-
cation. I loved this idea and suggested adding the finger vein biometric authentication layer (see
Research Manual document). However, this would only be added to the project after the mobile
application is implemented.

7 Acknowledgements

There are a lot of people that I have to acknowledge in this section to show my gratitude and
respect. The support and encouragement that I have been receiving from the Cyber2020 class
is something I will never be able to forget. The genuine assistance and reassurance that we’ll all
be just fine was valuable for my survival through this year.
Furthermore, I would like to express my appreciation to my close friend, Aya Aloraimi, who has
helped me keep going since first year in college and remained supportive throughout the college
years.

Also, I would like to say a huge thank you to the Electronic Mechanics & Aerospace Engi-
neering lecturer that provided me with the helpful info for operating the solenoid lock, Vincent
O’Brien. Thanks to Vincent I had the relief of not burning one more Raspberry Pi computer and
an LCD touchscreen!

All of the lecturers from first year to this year have my respect, and I would like to thank
you all for sharing your enthusiasm and knowledge with us.
Finally, I want to take the time to thank my project supervisor, James Egan, for his advice,
guidance, opinion, and support. He broadened the boundaries of my vision and capabilities for
the duration of the project and was always very prompt. Thank you for the time and effort you
put in for this project to be completed.

29

	Introduction
	Project Description
	Overview & Description
	System Components
	Hardware Components
	Software Components

	System Architecture
	Desktop Application User Interface
	Web Application User Interface

	Conformance to Specification and Design
	Learning Outcomes
	Technical Achievements
	Electronic Circuits
	Python
	Flask, Jinja2 & Bootstrap
	Raspberry Pi
	PyQt

	Project Review
	Positive Aspects/Aspects Achieved
	Aspects Not Achieved
	Aspects Gone Wrong
	Things I Would Change
	Problems Encountered

	Future Features
	Acknowledgements

