Static File Analysis Tool

Design Manual

Brian Tobin

C00216353

Table of Contents

INEFOTUCTION ...ttt b bbbt b et e e et b et b e 2
SEOUENCE DIAGIAMS ...ttt bbbt e bbbt b e bt e e bbb b b e ens 3
Open Application and SEIECt @ FIlEcveiviie e 3
Generate Hash and Backup CUrrent Fileccvvovei i 4
Check if file is packed and UNPACKc.oiveiiiiieieeie e 5
Display and SEIECE SEIINQSiieeiiieie et te e re e teeeeeneennas 6
(D1 0] F Y [ST SSS 7
Display DisasSEMDIYc.oouiiieii et 7
USer INErface WITETTAMES ..ot 8
IMAIN WINTOW ...ttt b bbbttt nb e bbbt ebeene s 8
POP UP WINGOWS ...ttt bbbt bbb 9
MaiN WINAOW DISPIAYSouveiiiiiiiitiitieee ettt 10
YL] 10 S USSR PP 10

[ST TR TRPP RPN 11
DISASSEMDIY ...t bbb b e bbb 11
CRBCKIISE ...ttt bbbt b e bbbt b bt eb e 12
PSEUOO-COUR ...tttk b bbbt b bbbttt nb ettt n e b e 13
Find Strings from BYLE ATTAYooviiiiiie ittt ettt sreesre e 13
IMPOTEEA DLL’S 1.ttt 14
DISASSEIMBIYo 15

Introduction

This manual will cover the main design features of the application including UML class and
sequence diagrams and mockups of the user interface created using Balsamiq. It should give the
reader a thorough understanding of how the application should be built, how it is interacted with
by the user and what the user interface should look like. The application is a static file analysis
tool intended for students learning reverse engineering or malware analysis. The main
functionality of this application has been determined in the Functional Specification document.

The user interface is kept simple as the application needs to be easy to use.

Sequence Diagrams

These sequence diagrams describe the interactions between the user and the application arranged

in a time sequence for each main function.

Open Application and Select a File

Application
Student i
: i
! Open Application |
*
[i
' Request File to Analyse '
O m T smsssossossTssssosssosoosooeo 1
' |
i
i
Select File i
>
' l
Alternative /| i
' l
i i
i Dizplay Home Screen '
iffile R 1
Was ' |
accepted ! i
E :
i i
E i
i i
i i
eioe o DisplayErorthenRequestFle)
= |
i i
! !
! !

Generate Hash and Backup Current File

Application
Student i
: i
' Click "Generate Hash” ;
: o
W i
' Display Hash Window i
e 1
: ;
i i
: i
: Click "OK™ :
; o
Close Hash Window i
ittt 4
: !
Click “Backup” !
| g
: Open Backup Window '
B 7
i
i
;
Click "OK” i
>
i
i
i

Close Backup Window

Check if file is packed and unpack

Application
Student i
H i
[] i
' Click "Check if Packed™ -.4:
H i
[i
' Display “Packed” Window |
Bt -
W i
: |
! Click "0K" !
= g
: Close "Packed” Window :
bbb -
| |
i i
i i
Alternative / !
- Click "Unpack” !
; =
i
! i
!{ Display “Unpack™ Screen _i
if file is ! i
packed E i
i Click “0OK” '
i = !
i
! Close “Unpack” Screen i
R et -
i
i
i
i
i
i
i
i

Display and select strings

Application
Student !
H i
[l i
' Click “Strings" '
: >
Display "Strings” List i
e SR S ;
E i
Loop /’ f i
' Select desired string ..4:
i i
i i
! Update Strings List i
e R ;
' i
i
Click "Saved Strings” i
g
i
i

Display "Saved Strings™ List

Display Hex

Application
Student
: Click "Hex" i
T L
' Dizplay "Hex" Cutput !
e :
Loop ; i
' Scroll up or down '
; e
: Update Output i
S pido vt 1
Display Disassembly
Application
Student
Click "Disassembly™ .Hi
! Dizplay "Dizassembly” Output i
e :
Loop ; i
' Scroll up or down '
- e
: Update Output i
S pido vt

User Interface Wireframes

Main Window

The mockup window below is what the main window could look like. The title of the window
contains the name and hash of the current file. A menu bar just below this with the main
functions of the application. The “File”, “Strings” and “Packers” options can each have a small

menu window as seen below in Figures 2, 3 and 4, while the remaining options will be displayed

in the big white space at the center of the main window seen in Figure 1.

Static File Analysis Tool - CurrentFileName, HashValue

=0 B8

File Packers Strings DLls Hex Disassemble

Virus Total

Checklist

—

Figure 1: Main window

Open CTRL+O
Open From Backups »

Generate Hash Check if Packed

Pack
Unpack

Create Backup
Exit CTRL+Q

Figure 2: File Menu Figure 3: Packer Menu

Figure 4: Strings Menu

® 3 or more characters
4 or more characters
Saved Strings

Pop Up Windows

A few sample windows that will be displayed when the user chooses options from the “File” or
“Packers” menus are shown below. They do not provide much information and don’t need to
take up the whole main window, so they are just pop ups that can be dismissed by clicking

C‘OK77.

Hash

The SHA-256 hash of the current file is
"E3BOC44298FC1C149AFBF4 CBA96FBA2427 AE41E4649BA34CA495991B7852B855"

,_ OK

Figure 5: Hash pop up

Backup

Current file was succesfully backed up to "Backup Folder" with the name
"E3B0C44298FC1C149AFBF4 C8996FBA2427 AE41E4649B934CA495991B7852B855 bak"

OK

Figure 6: Backup pop up

Check if Packed Pack Unpack
Current file is packed Current file was packed Current file has been
using UPX. using UPX succesfully. unpacked succesfully

Figures 7, 8 and 9: Packer pop ups

Main Window Displays

These options from the main windows menu bar will be displayed on the main window. They

are much more detailed than the previous options requiring the user to interact with the output

more than just clicking “OK”. The user should be able to move between these screens

seamlessly with the application remembering how far they scrolled down for example.

Strings

The strings output is a list of the strings found in the current file, allowing the user to select the

strings they find interesting. The strings menu allows the user to select between 3 or 4 character

minimum strings and the saved strings section containing all the strings they selected.

Strings - 3 or more characters

[Rich

O text

[“rdata

O tgP

O ~vH

W kernel32.dil

I InitializeCriticalSectionEx
I CreateEventExW

i GetUserDefaultLocaleName
?u

I Redmond1

O e97

O J<

R http://wwwsysinternals.com 0

Strings - Saved Strings

kernel32.dll
InitializeCriticalSectionEx
CreateEventExW
GetUserDefaultLocaleNome
Redmend1

http:/ /wwwsysinternals.com 0

Figure 10: Strings output

Figure 11: Saved strings

10

Hex

The hex mode displays the current file in hex on the left and the ASCII value of the hex on the

left. The user can scroll through this screen and find sentences made up of the individual strings

found earlier.

Disassembly

Hex

00000000
00000010

00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000A0
00000080
000000C0
000000D0
000000EQ
000000F0
00000100

Offset (hex) 00 0102 03 04 05 06 07 08 09 0A 0B 0C 0D OE OF

4D SA 50 00 02 00 00 00 04 00 OF Q0 FF FF 00 00

B8 00 00 00 00 00 00 00 40 00 1A 00 00 00 00 00
00 00 00 00 00 00 0D 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 0100 00

BA 10 00 OE 1F B4 09 CD 21B8 01 4C CD 21490 90

546869732070726F6772616D206D 7573

74 20 62 65 20 72 75 6E 20 75 6E 64 6572 20 57
69 6E 36 34 0D 0A 24 37 00 00 00 00 Q0 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 Q0 00 00 00 00
0000 00 00 00 00 00 00 00 00 00 0O 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
S0 45000064 86 0900 C699 20 SD 00 00 00 00

L (N R

This program mus
t be run under W
in64.%7....

PE.dT.E™]..

Figure 12: Hex mode

In disassembly mode the current file is disassembled and displayed on the screen. The left of the

display shows the hex value and the position it is located in the file. The right of the display
shows what the hex value is interpreted as in assembly code.

Disassembly
00000000 || 44 dec bp ﬁ
00000001 || 54 pop dx
00000002 || 9o nop
00000003 fl 0003 add byte ptr bp+di, al
00000005 Yl o000 add byte ptr bp+si, al
00000007 § o004 add byte ptr si, ol
00000009 Jl o000 add byte ptr bx+si, al
0000000b W ooff add bh, bh
0000000d Y tf00 ine word ptr bx+si
0000000f J 00bB000O add byte ptr bx+si+00000000h, bh
00000012) ooo0 add byte ptr bx+si, al
00000015 | cooo add byte ptr bx+si, al
00000017 || 004000 add byte ptr bx+si+00h, al
0000001 f§ 0000 add byte ptr bx+si, al
0000001 0000 add byte ptr bx+si, al
0000001 §f oooo add byte ptr bx+si, al
00000020 §f o000 add byte ptr bx+si, al
00000022 § o000 add byte ptr bx+si, al o

Figure 13: Disassembly mode

11

Checklist

The checklist is one of the most important screens which guides the user on what to do. Thisis a

very basic example of what they checklist should look like. It should have a list of steps and a

way to view more information on each step.

Checklist - 0%

File Name Hash (SHA-1)

Main Steps (Click on a step for help)
1 1) Select a File

2) Generate a hash

3) Backup the File

4) Check if Packed

6) Run Strings

) Select Noteworthy Strings

|
|
|
|
] 5) Unpack if Packed
|
|
|
|
|

Advanced Steps

] 1) Pack the current file

] 2) Look for differences in strings, hex and disass

Figure 14: Checklist

12

Pseudo-code

Find Strings from Byte Array

This function finds all strings in a file. A file is copied into a byte array. A string is defined as 3

or more characters between 32 and 126 inclusively on the ASCII table.

Initialize tempString to 0
Initialize stringList to 0
For each byte in the byte array
If the current byte is between 32 and 126
Append byte to tempString
Else if tempString length is greater than or equal to 3
Append tempString to stringList
Set tempString to null
Else

Set tempString to null

13

Imported DLL’s

This function finds the Import Directory Table and Import Address Table physical addresses
from the PE header. The IDT and IAT contains relative pointers to the address of the DLL names
and function names which are stored as null terminated strings. This function then follows these

pointers and inserts the strings into a string list.

Initialize IDTLocation to the 4 byte integer at PE Header Start Location + 128
Initialize pointerTerminator to false
While pointerTerminator is false
If pointerValue does not equal 0
Get string at pointerValue
Else

Set pointerTerminator to true

Repeat this for the Import Address Table to get the imported function names.

14

Disassembly

This function turns all the bytes in the code section of a PE file into a list of instruction.
Initialize codeStartLoc to the 4 byte integer at PE text location + 20
Initialize codeEndLoc to the 4 byte integer at PE text location + 8 - codeStartLoc
Initialize instructionOffset to 0
While codeStartLoc + instructionOffset < codeEndLoc
Initialize instructionComplete to false
While instructionComplete is false
Initialize currentByte to byte array at codeStartLoc + instructionOffset
If currentByte is a prefix byte
Handle the prefix byte
Else if currentByte is an opcode byte
Handle the opcode byte
Else if currentByte is a mod reg r/m byte
Handle the mod reg r/m byte
Else if currentByte is an SIB byte
Handle the SIB byte
Else if currentByte is a Displacement byte
Handle the Displacement byte
Else if currentByte is an Immediate byte
Handle the Displacement byte

Increment instructionOffset

