

Static File Analysis Tool

Research Manual

Brian Tobin

C00216353

i

Abstract

Static file analysis is the first step taken when trying to reverse engineer a file. This is where

you attempt to find out what a file does, without ever executing the file. Static file analysis

tools are more complex than needed for students studying reverse engineering and malware

analysis. This report reviews some common static file analysis tools and the techniques they

use. It also covers how students want a tool that is easy to use, and the technologies I will use

to develop that tool.

ii

Table of Contents

Abstract ... i

Table of Contents ... ii

Introduction ... iv

Static File Analysis .. 1

What is static file analysis? .. 1

Techniques Used .. 1

Hashing ... 1

VirusTotal ... 2

Packed Files .. 3

Strings ... 4

Portable Executable Dynamic Linking ... 5

Disassembly .. 6

Conclusion .. 8

Existing Products ... 9

PEiD ... 9

Hiew ... 11

010 Editor ... 12

Detect It Easy ... 13

Dependency Walker ... 14

What Reverse Engineering Students Want In An Application? .. 15

Conclusion .. 15

Front End Technologies ... 16

What are front-end technologies? .. 16

Qt .. 16

What is Qt? ... 16

Why use Qt? ... 17

Pros and Cons of using Qt .. 17

Swing .. 18

What is Swing? ... 18

Why use Swing? ... 18

Pros and Cons of using Swing .. 18

Xamarin .. 19

What is Xamarin? ... 19

Why use Xamarin? ... 19

iii

Pros and Cons of using Xamarin .. 19

Conclusion .. 20

Back End Technologies ... 21

What are back-end technologies? ... 21

C++ ... 21

What is C++? .. 21

Why use C++? .. 21

Pros and Cons of using C++ ... 21

Java ... 22

What is Java? .. 22

Why use Java? .. 22

Pros and Cons of using Java ... 22

C# ... 23

What is C#? .. 23

Why use C#? ... 23

Pros and Cons of using C# ... 23

Conclusion .. 24

Summary and Conclusion .. 25

Summary .. 25

Conclusion .. 25

Bibliography .. 26

iv

Introduction

There are many different tools used during static file analysis. These tools can be very

powerful and complex. Students studying reverse engineering and malware analysis must

use these tools to help them learn. This is a problem because the tools are designed with

functionality in mind, not necessarily usability. It can be hard to learn the basics when all the

tools are so advanced.

This report begins by looking at what features a static file analysis tool would require, then

looks at some existing products and what students want in a tool. The technologies that could

be used to create this tool are then reviewed. Finally, a conclusion is made about how this

tool will be developed.

1

Static File Analysis

What is static file analysis?

Static file analysis is usually the first step taken during reverse engineering or malware

analysis where a file analyst is trying to find out what a particular file does and how it does it.

It is static because the file is never actually executed unlike dynamic file analysis where the

file is executed and monitored in a safe environment. Static file analysis is straightforward in

that you can follow a checklist to make sure you do everything you need to. It may not be

enough for complicated files but it is a good starting point to get an idea of what a file does.

(Sikorski & Honig, 2012; Ninja, 2015)

Techniques Used

Hashing

The first thing that should be done is to generate a hash of the file (Yusirwan, et al., 2015). A

hash is a value calculated using the exact contents of the file. It is “unique” and if any part of

the file is changed, the hash will be a completely different value.

Figure 1: Screenshot of MD5 hash generator on miraclesalad.com (Miracle Salad, 2019)

In Figure 1, we can see the results of hashing the words “File1” and “File2” using the MD5

hashing algorithm. “File1”, gives a value of “4acc8e0d6e2084a8e32af7050071eba9”, and

“File2” gives a value of “136b4753c38a7606c243cec3cfa15316”. The only difference

between the words was a ‘1’ changed to a ‘2’, but the hash value is completely different.

This can be used to determine if the file has been changed in any way. The file should also

be backed up in case it is altered which you can verify with the hash and then restore the file.

2

VirusTotal

The first thing to do for malware analysis is to upload the file to a site called virustotal.com.

This website will scan the file using over 70 antiviruses and other tools giving the best chance

of detecting common malware (VirusTotal, n.d.).

Figure 2: Screenshot of a VirusTotal.com file scan.

In Figure 2, we can see part of the detailed report that virustotal.com gives. The file name is

“Lab13-02.exe” and a hash is given above it. It shows that 16 out of the 70 detection tools

detected it as a problem and it appears to be a Trojan. While VirusTotal is great for malware,

it is not as useful for general file analysis.

Figure 3: More details on VirusTotal.com.

Figure 3 is another screenshot from VirusTotal showing some of the details about the file

section sizes and some of the DLL’s the file imports. This is some of the only useful

information we can get about non-malware files from VirusTotal.

3

Packed Files

Executable files can be packed or compressed to make the file smaller or to obfuscate the

code to make it harder to reverse engineer or analyse (Sikorski & Honig, 2012). The code is

compressed and then packaged with the decompression code in one executable file. Most

common packer formats can be detected by a cross-platform tool called Detect It Easy. UPX

is a common packer that can be easily unpacked; if you unpack the file, it may get rid of

some of the obfuscation, allowing you to find out even more information about the files

functionality (Ninja, 2015).

Figure 5: Screenshot I took, of Detect It Easy showing a UPX packed file (NTInfo, 2019).

In Figure 5, I have selected a file called “strings.exe” that I packed myself, and in the packer

box, we can see that the file is packed using UPX version 3.95.

Figure 6: Another screenshot of Detect It Easy showing an unpacked file.

In Figure 6, I unpacked the same file and now we can see that Microsoft Visual C/C++ 2013

compiled it and it is no longer packed. I ran the strings command on both the packed and

unpacked versions and got 2631 and 2449 strings respectively. The packed file gave more

strings but it was mostly false readings, while the unpacked file gave fewer strings but had a

lot more useful information.

4

Strings

The next step would be to search the file for strings that could give you hints about the

functionality of the file (Ninja, 2015). A string is a group of alphanumeric characters that

might be human-readable. Strings are stored with a null value at the end so they can be

identified when needed. They can be searched for by using the strings program, which will

go through a hex dump of the file and try to find null-terminated strings of at least 3 or 4

characters in length depending on the implementation of the strings command (Sikorski &

Honig, 2012).

Figure 4: Screenshot I took, running strings on an executable file.

We can see in Figure 4 that strings found the names of the linked libraries: kernel32.dll,

user32.dll and advapi32.dll. It also found the functions VirtualAlloc, VirtualFree and

ExitProcess among others. These can give hints about the functionality of the program.

Strings can also give many false positives like the first few strings we see in Figure 4, these

should be filtered out manually before analysing the good strings. When analysing the good

strings we are looking for things like DLL names, functions or IP addresses. (Ninja, 2015)

5

Portable Executable Dynamic Linking

Windows uses DLL’s, which are part of a shared library of common code that can be used by

many applications at the same time. It is possible to get the names of some DLL’s by

running the strings command on a file, but Dependency Walker is a tool that will build a

hierarchical tree diagram of all the DLL’s and functions used in a Portable Executable file.

This is used to get a better idea of what the file will do when executed. (Sikorski & Honig,

2012)

Figure 7: Screenshot of Dependency Walker (Dependency Walker, 2015)

In Figure 7, we can see a screenshot of Dependency Walker that has built a picture of the

DLL’s used by the malicious file “Lab09-02.exe”. In one of the DLL’s, the function

“GetComputerNameExA” is highlighted, we can tell that it along with the other functions

below are gathering information about the computer. The file being analysed may be sending

this information back to the creator of this malicious file, but further searching would be

required to determine exactly what it is doing.

6

Disassembly

When the previous techniques have been used to try to get an understanding of what the

program does, we can then disassemble the file. A disassembler will try to recreate the

assembly code of the file, which is not very human-readable. This is why we try to

understand what the program does before looking at this code. (Yusirwan, et al., 2015)

Figure 8: Screenshot of a disassembled executable file I took using Hiew (Suslikov, 2019)

Figure 8 shows how some disassemblers are not completely accurate and try to interpret the

entire file as code. On the left side we have the memory address and value at that address e.g.

memory address: ‘.00400000’, with the hex value: ‘4D’. This value is the start of the file and

is the number that says this file is a PE file, but the disassembler is interpreting it as the

instruction ‘dec ebp’. The disassembler should only disassemble bytes in the code section

and should default to the code start location to be easier to use.

Figure 9: Another screenshot of Hiew, showing proper code

7

In figure 9, we have another screenshot of the same file just further down, which appears to

have some valid code. This disassembled code appears to be from the code section of the file

and contains some useful information such as the names of some imported DLL functions

and some strings. This can now be analysed using prior knowledge of what we think the

program is doing.

8

Conclusion

In conclusion, static file analysis is the first basic step taken when trying to reverse engineer

or analyse a computer file. There is only a handful of techniques that are used during static

file analysis. The first step is to hash and backup the file, and then if it is believed to be

malware, it should be uploaded to VirusTotal.com. The next step is to try to detect if the file

is packed, and attempt to unpack it. Then we run the strings command on the file to gather a

list of strings, and then look for interesting strings like function names or IP addresses. Then

for PE files, we can use Dependency Walker to build a diagram of the DLL’s and functions

used. Finally, we can disassemble the file and using the information we gathered from the

previous steps, to try to work out what the file is doing.

9

Existing Products

I researched some existing products that are used for static file analysis to see what features

they offer and gave some pros and cons of each product. The products needed to cover all

the techniques used in static file analysis. I thought that this would help me to define what

my project will require and where I can improve on previously existing products.

PEiD

PEiD is a tool for Windows that can detect common packers, cryptors and compilers for

Portable Executable files. It also has a disassembler and gives smaller details like the entry

point of the program. (Aldeid, 2013)

Figure 10: Screenshot of PEiD main window (SOFTPEDIA, 2018)

In Figure 10, we can see a screenshot of PEiD. It shows that the strings.exe file is packed

using UPX. I think that the layout looks good and is easy to use, although it is not very clear

that the ‘>’ symbol beside the “First Bytes” box is what opens up the disassembler.

10

Figure 11: Screenshot of PEiD’s disassembler and strings windows

In Figure 11, we can see the disassembler window. It is all black text on a white background,

and I think this could be improve by adding some colour to the code, which would make it

easier to read. The strings window is also accessed here and it gives the location of each

string, with the ability to search for a string as well.

Pros:

 Relatively simple program that can show disassembly, strings and if file is packed.

Cons:

 Runs only on Windows and only works for PE files.

 No hex editor.

 Black and white colour scheme looks flat.

11

Hiew

Hiew is a hex editor for Windows that is often used for static file analysis. It is command

line based and doesn’t look very good but has lots of features like the ability to view and edit

files in text, hex and disassembled code modes. It has a built in x86-64 disassembler and

assembler and many other advanced features like an encryption/decryption system and

support for many different modules. (Suslikov, 2019)

Figure 12: Hiew sample taken from hiew.ru (Suslikov, 2019)

In figure 12, we can see a sample of what Hiew looks like. I think that it looks very old and

is not very intuitive. It is running in a console, so you can only use a keyboard for input and

not the mouse.

Pros:

 Can disassemble files.

 Many features used for static file analysis such as, viewing files in hex and text with

the ability to search.

Cons:

 Runs in a console, making it harder to interact with than a GUI application.

 Only works on Windows.

 Can’t unpack files, limiting its functionality.

12

010 Editor

010 Editor is a cross-platform text editor that supports multiple formats. It can use binary

templates to parse a file into a hierarchical structure to make it easier to read binary files. It is

designed to be file editing software and supports hex editing which can be used during static

analysis but it does not offer much more features for file analysis. (SweetScape Software Inc.,

2019)

Figure 13: Screenshot of 010 Editor viewing strings.exe in hex mode (SweetScape Software

Inc., 2019)

In Figure 13, we can see a screenshot I took of 010 Editor opening a file in hex mode. It also

shows the respective text in the column to the right of the hex.

Pros:

 Lots of hex editing features.

 Cross-platform.

Cons:

 File editing tool rather than a static analysis tool.

 No disassembler.

 Can’t unpack files.

13

Detect It Easy

Detect It Easy is a cross-platform packet identifier that is used to determine file types. It has

open architecture of signatures, allowing the community to add new more complex detection

algorithms. This means the software can live on when the old algorithms become irrelevant

without the support of the original developer. (NTInfo, 2019)

Figure 14: Screenshot of Detect It Easy (NTInfo, 2019)

In Figure 14, we can see a screenshot of Detect It Easy with the main window on the left and

hex editor on the right. In my opinion, the main screen is very cluttered and the window is

very small and cannot be resized. I think if the window was bigger, the layout could be

designed to be more intuitive. I think the hex editor on the right looks good and is easy to use

however, when the window is open, you can no longer use the main window until the hex

editor is closed. This means you will need to close the hex editor just to use the search

function, which is annoying.

Pros:

 Cross-platform.

 GUI based and easier to use than console programs.

 Has hex editor.

Cons:

 Has a lot more features than is required for students learning about static file analysis.

 GUI is cluttered and not very user-friendly.

 Cannot run strings command without external script.

 Only one window can be used at a time, you cannot use the hex editor and search at

same time.

14

Dependency Walker

Dependency Walker is a tool for Windows that builds a hierarchical tree diagram of

dependent modules for any Windows module e.g. executable and DLL files. (Dependency

Walker, 2015)

Figure 15: A Screenshot of Dependency Walker looking at stings.exe (Dependency Walker,

2015)

In Figure 15, we can see some of the DLL’s being used by the strings.exe file. It calls

“KERNEL32.dll” using the functions “WriteConsoleW” and “ReadConsoleW”, which would

suggest that the program would be reading from and writing to the console.

Pros:

 Can give a more in depth view of the functions that are being used from the DLL’s.

Cons:

 Runs on Windows only.

 Its static analysis techniques are limited to finding dependent modules.

15

What Reverse Engineering Students Want In An Application?

From personal experience of being a student learning about reverse engineering and malware

analysis, I know that we don’t need to go into huge detail of all the techniques used during

static file analysis; we just need to understand the basic ideas first. The tools needed by

students do not have to be very powerful and only require basic features, and they should

look good and be easy to use. For example, Detect It Easy can do most of the required things

but it can’t run strings and the GUI is cluttered and doesn’t work very well. Dependency

Walker only does one thing and Hiew can’t unpack files and uses a console interface making

it hard to use.

Conclusion

Many tools already exist for static file analysis such as Hiew, PEiD, Dependency Walker, and

Detect It Easy. These are very powerful tools for what they are used for but are also

complicated and not very user friendly. There is no existing software that offers all the basic

static file analysis features in one place that is also very user-friendly. You will need

multiple powerful programs just to use the most basic features from each. For students

learning about static file analysis, it would be easier for them to have all the basic tools

required in one easy to use program.

16

Front End Technologies

What are front-end technologies?

Front-end is a term used when referring to what an end user of an application will see. This

will usually be a webpage or a Graphical User Interface (GUI). There are many different

tools that can be used to create front-end user interfaces. The examples I am going to cover

are Qt, Swing and Xamarin. The purpose of having a user-interface is to allow a person to

interact with a program. A good interface will be intuitive and easy to use.

Qt

What is Qt?

Qt is a free and open-source toolkit used to develop cross-platform GUI applications. It has

built libraries that can integrate natively with different operating systems. Qt Creator is an

IDE that implements the Qt toolkit allowing the code written in it to be compiled for various

operating systems such as Window, Linux, Android and iOS. (The Qt Company, 2019)

Figure 16: Screenshot of Qt Creator and an empty window (The Qt Company, 2019)

In Figure 16, we can see the Qt Creator IDE with the default code used to open up an

application with a blank window.

17

Why use Qt?

By using Qt, my application could be cross-platform and run on both Windows and Linux

without changing any code. Windows and Linux are the main operating systems that

students will be using, so having my application built for both will be ideal. It also uses C++,

which is a language that I have used before. Qt Creator also has built in support for Git,

which is a version control system used by almost every software development team currently.

Pros and Cons of using Qt

Pros:

 Easy way to make program cross-platform, as code can be compiled for lots of

different operating systems.

 No GUI problems across platforms, unlike some other tools.

Cons:

 I have never used it before; I will need to learn it, taking time away from project

development.

 My project must conform to their GPL or LGPL licensing.

18

Swing

What is Swing?

Swing is a GUI toolkit used for Java applications. It is built on top of AWT, which is the

original GUI toolkit for Java. The GUI must be designed by code only; there is no visual

designer like some of the new GUI building toolkits. (JavaTpoint, 2018)

Figure 17: Screenshot of a calculator that I made using Swing

In Figure 17, we can see a screenshot of a calculator application that I made using Swing. It

does not look very good and has been succeeded by JavaFX.

Why use Swing?

I have used Swing before when developing a calculator in Java, so there is much less of a

learning curve if I choose to use Swing, which would give more time to spend on developing

the project.

Pros and Cons of using Swing

Pros:

 Easy for me to put a basic GUI together.

Cons:

 Will make cross-platform development much more difficult, introducing unnecessary

GUI problems across different operating systems.

 The GUI will not look very good.

19

Xamarin

What is Xamarin?

 Xamarin is an open source platform that uses C# for the front and back end code, and is built

on top of the .NET framework. It is mostly designed for developing mobile apps for Android

and iOS, but also supports macOS and some other less popular operating systems. Xamarin

can be used to make applications for Windows, but it is designed for mobile apps and may

limit desktop functionality. It also cannot be used to build applications for Linux. (Microsoft,

2019)

Why use Xamarin?

I would use Xamarin if I wanted to develop an application for Android and iOS devices, but a

static analysis tool is much better suited for a desktop environment.

Pros and Cons of using Xamarin

Pros:

 Cross-platform across mobile operating systems, Android, iOS

Cons:

 Will not create apps for Linux.

 Static analysis tools are much more useful on desktops.

20

Conclusion

In conclusion, I believe the best choice for me is to use Qt and QT Creator for the front-end

development of my static file analysis tool. Qt can compile a project across both Windows

and Linux with little to no changes to the code, and the GUI should look the same across both

platforms. The only cons I can see are that I will need to learn how to use Qt, but his should

not be a problem as there is lots of support available online. Qt Creator also supports Git,

which will be good for me to get more experience using.

I do not think Swing is the best choice for me because of the problems creating GUI’s for

both Windows and Linux. In addition, the fact that Swing is old and the GUI will not look as

good as it could with newer tools like Qt.

I think Xamarin would be a good choice for developing mobile applications but a static file

analysis tool is much more useable on a desktop environment.

21

Back End Technologies

What are back-end technologies?

Back-end is a term used when referring to all the things that are happening in the background

that the user does not see. For example, if a user runs the strings command that we have seen

previously, they will receive an output of strings. They do not see how the program is getting

the strings, which is all done in the background. There are many different programming

languages that can be used for the back-end. The languages I will be covering are C++, Java

and C#.

C++

What is C++?

C++ is a programming language that was created as an extension to C to add object-oriented

features. It is a low-level language and compiles directly to machine code. It is used where

speed is important, is also one of the most popular languages, and has lots of support. In C++,

memory is managed manually unlike some higher-level languages which use automatic

garbage collection. This makes programming in C++ more complex. (Wikipedia, 2019)

Why use C++?

I have used C++ previously, so I can spend more time creating my project and won’t need to

spend time learning how to use it. It is also the main programming language implemented in

Qt, which is the tool I would like to use for front-end development.

Pros and Cons of using C++

Pros:

 I have used it before, very little learning curve.

 It is the main language used by Qt.

Cons:

 More work involved in programming e.g. garbage collection.

22

Java

What is Java?

Java is a programming language designed to be easy to use and has an object-oriented model.

Java programs are also very portable and will run on anything that has a Java Virtual

Machine installed. It has a built in garbage collector, which will free up memory from objects

that are no longer in use. This is one of the things that makes development easier. It is also

popular for mobile apps, with the Android operating system being built in Java. (Wikipedia,

2019)

Why use Java?

I have the most experience with Java over other programming languages. In my opinion, it is

the easiest language that I have used. Java has a built in GUI toolkit called Swing. I have

some experience making applications with Swing.

Pros and Cons of using Java

Pros:

 Java is the language that I have the most experience using.

Cons:

 Not officially supported in Qt.

 There are unnecessary problems introduced when developing for multiple platforms

using Swing.

23

C#

What is C#?

C#, pronounced C-Sharp, is an object-oriented programming language that runs on the .NET

framework and was created by Microsoft. It is a high-level language that compiles to

Common Language Runtime, which is a virtual machine that executes .NET programs. C# is

mostly used to develop applications and games for Windows. (Microsoft, 2015)

Why use C#?

C# is a high-level language and so it should be easy to use. I could use C# if I wanted to

develop a mobile app, and I could use it with Xamarin to make the app cross-platform.

Pros and Cons of using C#

Pros:

 Good for creating applications for Windows or mobile.

Cons:

 Not easy to create cross-platform programs for both Windows and Linux.

 I do not have much experience using C#.

24

Conclusion

In conclusion, I believe the best choice for me is to use C++ for the back-end development of

my static file analysis tool. C++ is the main programming language used by Qt, which is the

tool I would like to use for the front-end development of my project. I have also used C++

before, I do not find it much harder than other languages, and even though there will be a bit

more work involved, it should not have much of an impact overall.

I do not think that I should use Java because it is not officially supported by Qt and it think

that Qt will be the better choice over Swing. I found Java and C++ to feel similar enough

anyway and am comfortable using either.

C# is a good language for creating Windows or mobile apps but it does not work well for

what I need.

25

Summary and Conclusion

Summary

In this report, the main areas looked looked at static file analysis, Existing Products, Front

End Technologies and Back End Technologies. In static file analysis, I gave an overview of

what it is and explained the techniques used for: Hashing, VirusTotal, Packed Files, Strings,

Portable Executable DLL’s and Disassembly. In Existing Products, I reviewed some

common applications used during static file analysis and discussed what students want in an

application. In Front End and Back End Technologies, explained what they are and reviewed

Qt, Swing, Xamarin, C++, Java and C#, giving an overview, why I should use them and some

pros and cons of each.

Conclusion

In conclusion, I found out what a static file analysis tool must be able to do and what students

learning about reverse engineering and malware analysis want in a tool. Looking at existing

products, they do not suit the needs of students very well. They are unnecessarily

complicated, and students would benefit from using a tool that is easier to use and only has

the features they need. I want to create this tool, and after reviewing some front and back-

end technologies, I have decided to use Qt and the Qt Creator IDE to develop the GUI

interface and C++ for the back-end development. It will be cross-platform, working on both

Windows and Linux.

26

Bibliography
Aldeid, 2013. PEiD. [Online]

Available at: https://www.aldeid.com/wiki/PEiD

[Accessed 07 October 2019].

Dependency Walker, 2015. Dependency Walker 2.2. [Online]

Available at: http://www.dependencywalker.com

[Accessed 06 October 2019].

JavaTpoint, 2018. Java Swing Tutorial. [Online]

Available at: http://javatpoint.com/java-swing

[Accessed 12 October 2019].

Microsoft, 2015. Introduction to the C# Language and the .NET Framework. [Online]

Available at: https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-

the-csharp-language-and-the-net-framework

[Accessed 22 October 2019].

Microsoft, 2019. Xamarin. [Online]

Available at: http://dotnet.microsoft.com/apps/xamarin

[Accessed 16 October 2019].

Miracle Salad, 2019. md5 Hash Generator. [Online]

Available at: https://www.miraclesalad.com/webtools/md5.php

[Accessed 03 October 2019].

Ninja, S., 2015. Static Malware Analysis. [Online]

Available at: https://resources.infosecinstitute.com/malware-analysis-basics-static-analysis/

[Accessed 01 October 2019].

NTInfo, 2019. Detect It Easy. [Online]

Available at: https://ntinfo.biz/index.html

[Accessed 05 October 2019].

Sikorski, M. & Honig, A., 2012. Exploring Dynamic Linked Functions with Dependency

Walker. In: Practical Malware Analysis. San Francisco: William Pollock, pp. 16-17.

Sikorski, M. & Honig, A., 2012. Finding Strings. In: Practical Malware Analysis. San

Francisco: William Pollock, pp. 11-13.

Sikorski, M. & Honig, A., 2012. Packed and Obfuscated Malware. In: Practical Malware

Analysis. San Francisco: William Pollock, pp. 13-14.

Sikorski, M. & Honig, A., 2012. Practical Malware Analysis. San Francisco: William

Pollock.

SOFTPEDIA, 2018. PEiD. [Online]

Available at: https://www.softpedia.com/get/Programming/Packers-Crypters-

Protectors/PEiD-updated.shtml

[Accessed 07 October 2019].

27

Suslikov, E., 2019. Hiew. [Online]

Available at: http://www.hiew.ru

[Accessed 06 October 2019].

SweetScape Software Inc., 2019. 010 Editor. [Online]

Available at: https://www.sweetscape.com/010editor/

[Accessed 10 October 2019].

The Qt Company, 2019. Qt. [Online]

Available at: http://qt.io

[Accessed 11 October 2019].

VirusTotal, n.d.. How it works. [Online]

Available at: support.virustotal.com/hc/en-us/articles/115002126889-How-it-works

[Accessed 01 October 2019].

Wikipedia, 2019. C++. [Online]

Available at: http://en.wikipedia.org/wiki/C%2B%2B%

[Accessed 17 October 2019].

Wikipedia, 2019. Java (programming language). [Online]

Available at: http://en.wikipedia.org/wiki/Java_(programming_language)

[Accessed 19 October 2019].

Yusirwan, S., Prayudi, Y. & Riadi, I., 2015. Implementation of Malware Analysis using

Static and Dynamic Analysis Method. International Journal of Computer Applications,

117(6), pp. 11-15.

