Boolean Algebra and Logic Gates

COE 202

Digital Logic Design
Dr. Muhamed Mudawar
King Fahd University of Petroleum and Minerals

Presentation Outline

* Boolean Algebra
* Boolean Functions and Truth Tables
* DeMorgan's Theorem
* Algebraic manipulation and expression simplification
* Logic gates and logic diagrams
* Minterms and Maxterms
* Sum-Of-Products and Product-Of-Sums

Boolean Algebra

* Introduced by George Boole in 1854
\Varangle Two-valued Boolean algebra is also called switching algebra
* A set of two values: $B=\{0,1\}$
* Three basic operations: AND, OR, and NOT
* The AND operator is denoted by a dot (\cdot)
$\diamond x \cdot y$ or $x y$ is read: x AND y
$*$ The OR operator is denoted by a plus (+)
$\diamond x+y$ is read: $x \mathbf{O R} y$
* The NOT operator is denoted by (') or an overbar (${ }^{-}$).
$\diamond x^{\prime}$ or \bar{x} is the complement of x

Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in $B=\{0,1\}$
2. Identity element with respect to + is $0: x+0=0+x=x$ Identity element with respect to \cdot is $1: x \cdot 1=1 \cdot x=x$
3. Commutative with respect to $+: x+y=y+x$

Commutative with respect to $\cdot: x \cdot y=y \cdot x$
4. \cdot is distributive over $+: x \cdot(y+z)=(x \cdot y)+(x \cdot z)$

+ is distributive over $\cdot: x+(y \cdot z)=(x+y) \cdot(x+z)$

5. For every x in B , there exists x^{\prime} in B (called complement of x) such that: $x+x^{\prime}=1$ and $x \cdot x^{\prime}=0$

AND, OR, and NOT Operators

* The following tables define $x \cdot y, x+y$, and x^{\prime}
* $x \cdot y$ is the AND operator
* $x+y$ is the OR operator
* x^{\prime} is the NOT operator

$\mathbf{x} \mathbf{y}$	$\mathbf{x} \cdot \mathbf{y}$	\mathbf{x}	\mathbf{y}	$\mathbf{x + y}$	\mathbf{x}	x^{\prime}
0	0	0	0	0	0	0
0	1	0	0	1	1	1
1	0	0	1	0	1	0
1	1	1	1	1	1	

Boolean Functions

* Boolean functions are described by expressions that consist of:
\diamond Boolean variables, such as: x, y, etc.
\triangleleft Boolean constants: 0 and 1
» Boolean operators: AND (•), OR (+), NOT (')
\diamond Parentheses, which can be nested
* Example: $f=x\left(y+w^{\prime} z\right)$
\checkmark The dot operator is implicit and need not be written
* Operator precedence: to avoid ambiguity in expressions
\diamond Expressions within parentheses should be evaluated first
\diamond The NOT (') operator should be evaluated second
\diamond The AND (•) operator should be evaluated third
\diamond The OR (+) operator should be evaluated last

Truth Table

* A truth table can represent a Boolean function
* List all possible combinations of 0's and 1's assigned to variables
* If n variables then 2^{n} rows
* Example: Truth table for $f=x y^{\prime}+x^{\prime} z$

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{y}^{\prime}	$\mathbf{x} \mathbf{y}^{\prime}$	\mathbf{x}^{\prime}	$\mathbf{x}^{\prime} \mathbf{z}$	$\mathbf{f}=\mathbf{x y} \mathbf{'}^{\prime}+\mathbf{x}^{\prime} \mathbf{z}$
0	0	0	1	0	1	0	0
0	0	1	1	0	1	1	1
0	1	0	0	0	1	0	0
0	1	1	0	0	1	1	1
1	0	0	1	1	0	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

DeMorgan's Theorem

$*(x+y)^{\prime}=x^{\prime} y^{\prime}$

* $(x y)^{\prime}=x^{\prime}+y^{\prime}$

X	y	x^{\prime}	y^{\prime}	$x+y$	$(x+y)^{\prime}$	$x^{\prime} y^{\prime}$	x y	$\left.{ }^{(x y}\right)^{\prime}$	$x^{\prime}+y^{\prime}$
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

* Generalized DeMorgan's Theorem:
$\nLeftarrow\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{\prime}=x_{1}^{\prime} \cdot x_{2}^{\prime} \cdot \cdots \cdot x_{n}^{\prime}$
$\not\left(x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n}\right)^{\prime}=x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{n}^{\prime}$

Complementing Boolean Functions

* What is the complement of $f=x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}$?
* Use DeMorgan's Theorem:
\triangleleft Complement each variable and constant
« Interchange AND and OR operators
* So, what is the complement of $f=x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}$?

Answer: $f^{\prime}=\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right)$

* Example 2: Complement $g=\left(a^{\prime}+b c\right) d^{\prime}+e$
* Answer: $g^{\prime}=\left(a\left(b^{\prime}+c^{\prime}\right)+d\right) e^{\prime}$

Algebraic Manipulation of Expressions

* The objective is to acquire skills in manipulating Boolean expressions, to transform them into simpler form.
*. Example 1: prove $x+x y=x$
(absorption theorem)
*Proof: $x+x y=x \cdot 1+x y$

$$
x \cdot 1=x
$$

$$
\begin{aligned}
& =x \cdot(1+y) \\
& =x \cdot 1=x
\end{aligned}
$$

Distributive - over +
$(1+y)=1$

* Example 2: prove $x+x^{\prime} y=x+y$ (simplification theorem)
*Proof: $x+x^{\prime} y=\left(x+x^{\prime}\right)(x+y) \quad$ D

$$
\begin{aligned}
& =1 \cdot(x+y) \\
& =x+y
\end{aligned}
$$

Consensus Theorem

Prove that: $x y+x^{\prime} z+y z=x y+x^{\prime} z$ (consensus theorem)
Proof: $x y+x^{\prime} z+y z$

$$
\begin{aligned}
& =x y+x^{\prime} z+1 \cdot y z \\
& =x y+x^{\prime} z+\left(x+x^{\prime}\right) y z \\
& =x y+x^{\prime} z+x y z+x^{\prime} y z \\
& =x y+x y z+x^{\prime} z+x^{\prime} y z \\
& =x y \cdot 1+x y z+x^{\prime} z \cdot 1+x^{\prime} z y \\
& =x y(1+z)+x^{\prime} z(1+y) \\
& =x y \cdot 1+x^{\prime} z \cdot 1 \\
& =x y+x^{\prime} z
\end{aligned}
$$

$$
y z=1 \cdot y z
$$

$$
1=\left(x+x^{\prime}\right)
$$

Distributive • over +
Associative commutative +

$$
x y=x y \cdot 1, \quad x^{\prime} y z=x^{\prime} z y
$$

Distributive • over +

Distributive • over +

$$
\begin{aligned}
& 1+z=1, \quad 1+y=1 \\
& x y \cdot 1=x y, \quad x^{\prime} z \cdot 1=x^{\prime} z
\end{aligned}
$$

Summary of Boolean Algebra

Property

Identity
Complement

$$
x+x^{\prime}=1
$$

Null
Idempotence

$$
x+0=x
$$

$$
x+1=1
$$

$$
x+x=x
$$

Involution

$$
\left(x^{\prime}\right)^{\prime}=x
$$

Commutative
Associative
Distributive

$$
x(y+z)=x y+x z
$$

Absorption

$$
x+x y=x
$$

Simplification

$$
x+x^{\prime} y=x+y
$$

De Morgan

$$
(x+y)^{\prime}=x^{\prime} y^{\prime}
$$

$$
\begin{array}{rlrl}
x+y & =y+x & x y & =y x \\
(x+y)+z & =x+(y+z) & (x y) z & =x(y z)
\end{array}
$$

Dual Property

$$
\begin{aligned}
& x \cdot 1=x \\
& x \cdot x^{\prime}=0 \\
& x \cdot 0=0 \\
& x \cdot x=x
\end{aligned}
$$

$$
x+y z=(x+y)(x+z)
$$

$$
x(x+y)=x
$$

$$
x\left(x^{\prime}+y\right)=x y
$$

$$
(x y)^{\prime}=x^{\prime}+y^{\prime}
$$

Duality Principle

$\not \approx$ The dual of a Boolean expression can be obtained by:
\diamond Interchanging AND (•) and OR (+) operators
\diamond Interchanging 0's and 1's

* Example: the dual of $x\left(y+z^{\prime}\right)$ is $x+y z^{\prime}$
\triangleleft The complement operator does not change
* The properties of Boolean algebra appear in dual pairs
\triangleleft If a property is proven to be true then its dual is also true

Identity
Complement
Distributive

Property

$$
\begin{gathered}
x+0=x \\
x+x^{\prime}=1 \\
x(y+z)=x y+x z
\end{gathered}
$$

Expression Simplification

* Using Boolean algebra to simplify expressions
* Expression should contain the smallest number of literals
* A literal is a variable that may or may not be complemented

Example: simplify $a b+a^{\prime} c d+a^{\prime} b d+a^{\prime} c d^{\prime}+a b c d$

* Solution: $a b+a^{\prime} c d+a^{\prime} b d+a^{\prime} c d^{\prime}+a b c d \quad$ (15 literals)

$$
\begin{aligned}
& =a b+a b c d+a^{\prime} c d+a^{\prime} c d^{\prime}+a^{\prime} b d \\
& =a b+a b(c d)+a^{\prime} c\left(d+d^{\prime}\right)+a^{\prime} b d \\
& =a b+a^{\prime} c+a^{\prime} b d \\
& =b a+b a^{\prime} d+a^{\prime} c \\
& =b\left(a+a^{\prime} d\right)+a^{\prime} c \\
& =b(a+d)+a^{\prime} c
\end{aligned}
$$

(15 literals)
(13 literals)
(7 literals)
(7 literals)
(6 literals)
(5 literals only)

Importance of Boolean Algebra

* Our objective is to learn how to design digital circuits
* These circuits use signals with two possible values
* Logic 0 is a low voltage signal (around 0 volts)
* Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)
* The physical value of a signal is the actual voltage it carries, while its logic value is either 0 (low) or 1 (high)
* Having only two logic values (0 and 1) simplifies the implementation of the digital circuit

Next . . .

* Boolean Algebra
* Boolean Functions and Truth Tables
* DeMorgan's Theorem
* Algebraic manipulation and expression simplification
* Logic gates and logic diagrams
* Minterms and Maxterms
* Sum-Of-Products and Product-Of-Sums

Logic Gates and Symbols

AND: Switches in series logic 0 is open switch

OR gate

OR: Switches in parallel logic 0 is open switch

NOT gate (inverter)

NOT: Switch is normally closed when x is 0

* In the earliest computers, relays were used as mechanical switches controlled by electricity (coils)
* Today, tiny transistors are used as electronic switches that implement the logic gates (CMOS technology)

Truth Table and Logic Diagram

* Given the following logic function: $f=x\left(y^{\prime}+z\right)$
* Draw the corresponding truth table and logic diagram

Truth Table

x	y	z	$y^{\prime}+z$	$f=x\left(y^{\prime}+z\right)$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Logic Diagram

Truth Table and Logic Diagram describe the same function f. Truth table is unique, but logic expression and logic diagram are not. This gives flexibility in implementing logic functions.

Combinational Circuit

* A combinational circuit is a block of logic gates having:
n inputs: $x_{1}, x_{2}, \ldots, x_{n}$ m outputs: $f_{1}, f_{2}, \ldots, f_{m}$
$*$ Each output is a function of the input variables
* Each output is determined from present combination of inputs
* Combination circuit performs operation specified by logic gates

Example of a Simple Combinational Circuit

* The above circuit has:
\diamond Three inputs: x, y, and z
\diamond Two outputs: f and g
* What are the logic expressions of f and g ?
* Answer: $\quad f=x y+z^{\prime}$

$$
g=x y+y z
$$

From Truth Tables to Gate Implementation

* Given the truth table of a Boolean function f, how do we implement the truth table using logic gates?

Truth Table

| \mathbf{x} | \mathbf{y} | \mathbf{z} | \mathbf{f} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | | 0 |
| 0 | 0 | 1 | | 0 |
| 0 | 1 | 0 | | 1 |
| 0 | 1 | 1 | | 1 |
| 1 | 0 | 0 | 0 | |
| 1 | 0 | 1 | | 1 |
| 1 | 1 | 0 | | 0 |
| 1 | 1 | 1 | | 1 |

What is the logic expression of f ?

What is the gate implementation of f ?

To answer these questions, we need to define Minterms and Maxterms

Minterms and Maxterms

* Minterms are AND terms with every variable present in either true or complement form
* Maxterms are OR terms with every variable present in either true or complement form

Minterms and Maxterms for 2 variables x and y

\mathbf{x}	\mathbf{y}	index	Minterm	Maxterm
0	0	0	$m_{0}=x^{\prime} y^{\prime}$	$M_{0}=x+y$
0	1	1	$m_{1}=x^{\prime} y$	$M_{1}=x+y^{\prime}$
1	0	2	$m_{2}=x y^{\prime}$	$M_{2}=x^{\prime}+y$
1	1	3	$m_{3}=x y$	$M_{3}=x^{\prime}+y^{\prime}$

* For n variables, there are 2^{n} Minterms and Maxterms

Minterms and Maxterms for 3 Variables

\mathbf{x}	\mathbf{y}	\mathbf{z}	index	Minterm	Maxterm
0	0	0	0	$m_{0}=x^{\prime} y^{\prime} z^{\prime}$	$M_{0}=x+y+z$
0	0	1	1	$m_{1}=x^{\prime} y^{\prime} z$	$M_{1}=x+y+z^{\prime}$
0	1	0	2	$m_{2}=x^{\prime} y z^{\prime}$	$M_{2}=x+y^{\prime}+z$
0	1	1	3	$m_{3}=x^{\prime} y z$	$M_{3}=x+y^{\prime}+z^{\prime}$
1	0	0	4	$m_{4}=x y^{\prime} z^{\prime}$	$M_{4}=x^{\prime}+y+z$
1	0	1	5	$m_{5}=x y^{\prime} z$	$M_{5}=x^{\prime}+y+z^{\prime}$
1	1	0	6	$m_{6}=x y z^{\prime}$	$M_{6}=x^{\prime}+y^{\prime}+z$
1	1	1	7	$m_{7}=x y z$	$M_{7}=x^{\prime}+y^{\prime}+z^{\prime}$

Maxterm M_{i} is the complement of Minterm m_{i}

$$
M_{i}=m_{i}^{\prime} \text { and } m_{i}=M_{i}^{\prime}
$$

Purpose of the Index

* Minterms and Maxterms are designated with an index
* The index for the Minterm or Maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true or complemented form
* For Minterms:
s '1' means the variable is Not Complemented
\triangleleft ' 0 ' means the variable is Complemented
\star For Maxterms:
\checkmark ' 0 ' means the variable is Not Complemented
\diamond ' 1 ' means the variable is Complemented

Sum-Of-Minterms (SOM) Canonical Form

Truth Table

| \mathbf{x} | \mathbf{y} | \mathbf{z} | \mathbf{f} | Minterm |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | |
| 0 | 0 | 1 | 0 | |
| 0 | 1 | 0 | 1 | $m_{2}=x^{\prime} y z^{\prime}$ |
| 0 | 1 | 1 | 1 | $m_{3}=x^{\prime} y z$ |
| 1 | 0 | 0 | 0 | |
| 1 | 0 | 1 | 1 | $m_{5}=x y^{\prime} z$ |
| 1 | 1 | 0 | 0 | |
| 1 | 1 | 1 | 1 | $m_{7}=x y z$ |

Sum of Minterm entries

 that evaluate to ' 1 'Focus on the ' 1 ' entries

$$
f=m_{2}+m_{3}+m_{5}+m_{7}
$$

$$
f=\sum(2,3,5,7)
$$

$$
f=x^{\prime} y z^{\prime}+x^{\prime} y z+x y^{\prime} z+x y z
$$

Examples of Sum-Of-Minterms

$f(a, b, c, d)=\sum(2,3,6,10,11)$
$f(a, b, c, d)=m_{2}+m_{3}+m_{6}+m_{10}+m_{11}$
\& $f(a, b, c, d)=a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b c d^{\prime}+a b^{\prime} c d^{\prime}+a b^{\prime} c d$
$g(a, b, c, d)=\sum(0,1,12,15)$

* $g(a, b, c, d)=m_{0}+m_{1}+m_{12}+m_{15}$
$\nLeftarrow(a, b, c, d)=a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a b c^{\prime} d^{\prime}+a b c d$

Product-Of-Maxterms (POM) Canonical Form

Truth Table

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{f}	Maxterm
0	0	0	0	$M_{0}=x+y+z$
0	0	1	0	$M_{1}=x+y+z^{\prime}$
0	1	0	1	
0	1	1	1	
1	0	0	0	$M_{4}=x^{\prime}+y+z$
1	0	1	1	
1	1	0	0	$M_{6}=x^{\prime}+y^{\prime}+z$
1	1	1	1	

Product of Maxterm entries that evaluate to ' 0 '

Focus on the ' 0 ' entries

$$
f=M_{0} \cdot M_{1} \cdot M_{4} \cdot M_{6}
$$

$$
f=\prod(0,1,4,6)
$$

$$
f=(x+y+z)\left(x+y+z^{\prime}\right)\left(x^{\prime}+y+z\right)\left(x^{\prime}+y^{\prime}+z\right)
$$

Examples of Product-Of-Maxterms

* $f(a, b, c, d)=\Pi(1,3,11)$
* $f(a, b, c, d)=M_{1} \cdot M_{3} \cdot M_{11}$
$f(a, b, c, d)=\left(a+b+c+d^{\prime}\right)\left(a+b+c^{\prime}+d^{\prime}\right)\left(a^{\prime}+b+c^{\prime}+d^{\prime}\right)$
* $g(a, b, c, d)=\Pi(0,5,13)$
$g(a, b, c, d)=M_{0} \cdot M_{5} \cdot M_{13}$
$f(a, b, c, d)=(a+b+c+d)\left(a+b^{\prime}+c+d^{\prime}\right)\left(a^{\prime}+b^{\prime}+c+d^{\prime}\right)$

Conversions between Canonical Forms

* The same Boolean function f can be expressed in two ways:
« Sum-of-Minterms

$$
f=m_{0}+m_{2}+m_{3}+m_{5}+m_{7}=\sum(0,2,3,5,7)
$$

\diamond Product-of-Maxterms $f=M_{1} \cdot M_{4} \cdot M_{6}=\Pi(1,4,6)$

Truth Table

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{f}	Minterms	Maxterms
0	0	0	1	$m_{0}=x^{\prime} y^{\prime} z^{\prime}$	
0	0	1	0		$M_{1}=x+y+z^{\prime}$
0	1	0	1	$m_{2}=x^{\prime} y z^{\prime}$	
0	1	1	1	$m_{3}=x^{\prime} y z$	
1	0	0	0		$M_{4}=x^{\prime}+y+z$
1	0	1	1	$m_{5}=x y^{\prime} z$	
1	1	0	0		$M_{6}=x^{\prime}+y^{\prime}+z$
1	1	1	1	$m_{7}=x y z$	

> To convert from one canonical form to another, interchange the symbols \sum and Π and list those numbers missing from the original form.

Function Complement

Truth Table

x	y	z	f	f^{\prime}
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

Given a Boolean function f
$f(x, y, z)=\sum(0,2,3,5,7)=\prod(1,4,6)$
Then, the complement f^{\prime} of function f

$$
f^{\prime}(x, y, z)=\prod(0,2,3,5,7)=\sum(1,4,6)
$$

The complement of a function expressed by a Sum of Minterms is the Product of Maxterms with the same indices. Interchange the symbols Σ and Π, but keep the same list of indices.

Summary of Minterms and Maxterms

* There are 2^{n} Minterms and Maxterms for Boolean functions with n variables, indexed from 0 to $2^{n}-1$
* Minterms correspond to the 1-entries of the function
* Maxterms correspond to the 0-entries of the function
* Any Boolean function can be expressed as a Sum-of-Minterms and as a Product-of-Maxterms
* For a Boolean function, given the list of Minterm indices one can determine the list of Maxterms indices (and vice versa)
* The complement of a Sum-of-Minterms is a Product-of-Maxterms with the same indices (and vice versa)

Sum-of-Products and Products-of-Sums

* Canonical forms contain a larger number of literals
\diamond Because the Minterms (and Maxterms) must contain, by definition, all the variables either complemented or not
* Another way to express Boolean functions is in standard form
\& Two standard forms: Sum-of-Products and Product-of -Sums
* Sum of Products (SOP)
\diamond Boolean expression is the ORing (sum) of AND terms (products)
\diamond Examples: $f_{1}=x y^{\prime}+x z \quad f_{2}=y+x y^{\prime} z$
* Products of Sums (POS)
\diamond Boolean expression is the ANDing (product) of OR terms (sums)
\diamond Examples: $f_{3}=(x+z)\left(x^{\prime}+y^{\prime}\right) \quad f_{4}=x\left(x^{\prime}+y^{\prime}+z\right)$

Two-Level Gate Implementation

$$
f_{1}=x y^{\prime}+x z
$$

$f_{3}=(x+z)\left(x^{\prime}+y^{\prime}\right)$

$f_{4}=x\left(x^{\prime}+y^{\prime}+z\right)$

Two-Level vs. Three-Level Implementation

* $h=a b+c d+c e$ (6 literals) is a sum-of-products
* h may also be written as: $h=a b+c(d+e)$ (5 literals)
* However, $h=a b+c(d+e)$ is a non-standard form
$\diamond h=a b+c(d+e)$ is not a sum-of-products nor a product-of-sums

2-level implementation

$$
h=a b+c d+c e
$$

3-level implementation

$$
h=a b+c(d+e)
$$

