Boolean Algebra and Logic Gates

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

- Boolean Algebra
- Boolean Functions and Truth Tables
- DeMorgan's Theorem
- Algebraic manipulation and expression simplification
- Logic gates and logic diagrams
- Minterms and Maxterms
- Sum-Of-Products and Product-Of-Sums

Boolean Algebra

- Introduced by George Boole in 1854
- Two-valued Boolean algebra is also called switching algebra
- ♣ A set of two values: $B = \{0, 1\}$
- Three basic operations: AND, OR, and NOT
- ✤ The AND operator is denoted by a dot (•)
 - $\Rightarrow x \cdot y \text{ or } xy \text{ is read: } x \text{ AND } y$
- The OR operator is denoted by a plus (+)
 - $\Rightarrow x + y \text{ is read: } x \text{ OR } y$
- ✤ The NOT operator is denoted by (') or an overbar (⁻).
 - $\Rightarrow x' \text{ or } \overline{x} \text{ is the complement of } x$

Postulates of Boolean Algebra

- 1. Closure: the result of any Boolean operation is in $B = \{0, 1\}$
- 2. Identity element with respect to + is 0: x + 0 = 0 + x = xIdentity element with respect to \cdot is 1: $x \cdot 1 = 1 \cdot x = x$
- 3. Commutative with respect to +: x + y = y + x

Commutative with respect to $\cdot : x \cdot y = y \cdot x$

- 4. is distributive over +: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
 - + is distributive over $\cdot : x + (y \cdot z) = (x + y) \cdot (x + z)$
- 5. For every x in B, there exists x' in B (called complement of x) such that: x + x' = 1 and $x \cdot x' = 0$

AND, OR, and NOT Operators

- ✤ The following tables define $x \cdot y$, x + y, and x'
- * $x \cdot y$ is the **AND** operator
- x + y is the **OR** operator
- x' is the **NOT** operator

ху	х•у	ху	x+y	X	х'
00	0	00	0	0	1
01	0	01	1	1	0
10	0	10	1		
1 1	1	1 1	1		

Boolean Functions

Boolean functions are described by expressions that consist of:

- \diamond Boolean variables, such as: *x*, *y*, etc.
- ♦ Boolean constants: 0 and 1
- \diamond Boolean operators: AND (\cdot), OR (+), NOT (')

 \diamond Parentheses, which can be nested

• Example:
$$f = x(y + w'z)$$

♦ The dot operator is implicit and need not be written

- Operator precedence: to avoid ambiguity in expressions
 - ♦ Expressions within parentheses should be evaluated first
 - ♦ The NOT (') operator should be evaluated second
 - \diamond The AND (.) operator should be evaluated third
 - ♦ The OR (+) operator should be evaluated last

Truth Table

- ✤ A truth table can represent a Boolean function
- List all possible combinations of 0's and 1's assigned to variables
- ✤ If *n* variables then 2^n rows
- **\therefore** Example: Truth table for f = xy' + x'z

X	У	Z	у'	xy'	Х'	x'z	f = xy'+ x'z
0	0	0	1	0	1	0	0
0	0	1	1	0	1	1	1
0	1	0	0	0	1	0	0
0	1	1	0	0	1	1	1
1	0	0	1	1	0	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

DeMorgan's Theorem

$\bigstar (x+y)' = x' y'$	Can be verified	
$\bigstar (x y)' = x' + y'$	Using a Truth Table	

x	У	х'	у'	x+y	(x+y)'	x'y'	ху	(x y)'	x'+ y'
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0
					Idan	tical		Ident	ical

Identical

Identical

Generalized DeMorgan's Theorem:

$$\bigstar (x_1 + x_2 + \dots + x_n)' = x'_1 \cdot x'_2 \cdot \dots \cdot x'_n$$

 $\bigstar (x_1 \cdot x_2 \cdot \dots \cdot x_n)' = x_1' + x_2' + \dots + x_n'$

Complementing Boolean Functions

- What is the complement of f = x'yz' + xy'z'?
- ✤ Use DeMorgan's Theorem:
 - ♦ Complement each variable and constant
 - ♦ Interchange AND and OR operators
- So, what is the complement of f = x'yz' + xy'z'?

Answer:
$$f' = (x + y' + z)(x' + y + z)$$

Example 2: Complement g = (a' + bc)d' + e

Answer:
$$g' = (a(b' + c') + d)e'$$

Algebraic Manipulation of Expressions

- The objective is to acquire skills in manipulating Boolean expressions, to transform them into simpler form.
- *** Example 1:** prove x + xy = x (absorption theorem) *** Proof:** $x + xy = x \cdot 1 + xy$ $x \cdot 1 = x$ $x \cdot (1 + y)$ $x \cdot 1 = x$ Distributive \cdot over + (1 + y) = 1
- **Example 2:** prove x + x'y = x + y (simplification theorem)
- Proof: x + x'y = (x + x')(x + y)Distributive + over $= 1 \cdot (x + y)$ = x + y

Consensus Theorem

Prove that: xy + x'z + yz = xy + x'z (consensus theorem)
Proof: xy + x'z + yz $= xy + x'z + 1 \cdot yz$ $yz = 1 \cdot yz$

= xy + x'z + (x + x')yz

= xy + x'z + xyz + x'yz= xy + xyz + x'z + x'yz

 $= xy \cdot 1 + xyz + x'z \cdot 1 + x'zy$

= xy(1+z) + x'z(1+y)

 $= xy \cdot 1 + x'z \cdot 1$

= xy + x'z

$$yz = 1 \cdot yz$$
$$1 = (x + x')$$

Distributive • over +

Associative commutative +

 $xy = xy \cdot 1$, x'yz = x'zy

Distributive • over +

1 + z = 1, 1 + y = 1

 $xy \cdot 1 = xy, \ x'z \cdot 1 = x'z$

Summary of Boolean Algebra

	Property	Dual Property
Identity	x + 0 = x	$x \cdot 1 = x$
Complement	x + x' = 1	$x \cdot x' = 0$
Null	x + 1 = 1	$x \cdot 0 = 0$
Idempotence	x + x = x	$x \cdot x = x$
Involution	(x')' = x	
Commutative	x + y = y + x	x y = y x
Associative	(x + y) + z = x + (y + z)	(x y) z = x (y z)
Distributive	x(y+z) = xy + xz	x + yz = (x + y)(x + z)
Absorption	x + xy = x	x(x+y) = x
Simplification	x + x'y = x + y	x(x'+y) = xy
De Morgan	(x+y)' = x'y'	(x y)' = x' + y'

Duality Principle

- The dual of a Boolean expression can be obtained by:
 - $\diamond\,$ Interchanging AND (\cdot) and OR (+) operators
 - \diamond Interchanging 0's and 1's
- ♦ Example: the dual of x(y + z') is x + yz'
 - $\diamond\,$ The complement operator does not change
- The properties of Boolean algebra appear in dual pairs
 - \diamond If a property is proven to be true then its dual is also true

	Property	Dual Property
Identity	x + 0 = x	$x \cdot 1 = x$
Complement	x + x' = 1	$x \cdot x' = 0$
Distributive	x(y+z) = xy + xz	x + yz = (x + y)(x + z)

Expression Simplification

- Using Boolean algebra to simplify expressions
- Expression should contain the smallest number of literals
- ✤ A literal is a variable that may or may not be complemented
- **Example:** simplify ab + a'cd + a'bd + a'cd' + abcd
- **Solution:** ab + a'cd + a'bd + a'cd' + abcd (15 literals)

$$= ab + abcd + a'cd + a'cd' + a'bd$$

$$= ab + ab(cd) + a'c(d + d') + a'bd$$

$$= ab + a'c + a'bd$$
$$= ba + ba'd + a'c$$

$$= b(a + a'd) + a'c$$
$$= b(a + d) + a'c$$

(13 literals)(7 literals)(7 literals)(6 literals)

(15 literals)

(5 literals only)

Importance of Boolean Algebra

Our objective is to learn how to design digital circuits

- These circuits use signals with two possible values
- Logic 0 is a low voltage signal (around 0 volts)
- Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)
- The physical value of a signal is the actual voltage it carries, while its logic value is either 0 (low) or 1 (high)
- Having only two logic values (0 and 1) simplifies the implementation of the digital circuit

- Boolean Algebra
- Boolean Functions and Truth Tables
- DeMorgan's Theorem
- Algebraic manipulation and expression simplification
- Logic gates and logic diagrams
- Minterms and Maxterms

Sum-Of-Products and Product-Of-Sums

Logic Gates and Symbols

AND gate

OR gate

NOT gate (inverter)

AND: Switches in series logic 0 is open switch

OR: Switches in parallel logic 0 is open switch

NOT: Switch is normally closed when x is 0

- In the earliest computers, relays were used as mechanical switches controlled by electricity (coils)
- Today, tiny transistors are used as electronic switches that implement the logic gates (CMOS technology)

Truth Table and Logic Diagram

- Given the following logic function: f = x(y' + z)
- Draw the corresponding truth table and logic diagram

Truth Table

хуz	y'+ z	f = x(y'+z)
000	1	0
001	1	0
010	0	0
011	1	0
100	1	1
101	1	1
1 1 0	0	0
1 1 1	1	1

Logic Diagram

Truth Table and Logic Diagram describe the same function f. Truth table is unique, but logic expression and logic diagram are not. This gives flexibility in implementing logic functions.

Combinational Circuit

✤ A combinational circuit is a block of logic gates having:

n inputs: x_1, x_2, \ldots, x_n

m outputs: f_1, f_2, \dots, f_m

- Each output is a function of the input variables
- Each output is determined from present combination of inputs
- Combination circuit performs operation specified by logic gates

Example of a Simple Combinational Circuit

The above circuit has:

- \diamond Three inputs: *x*, *y*, and *z*
- \diamond Two outputs: *f* and *g*

 \clubsuit What are the logic expressions of f and g ?

*** Answer:** f = xy + z'

$$g = xy + yz$$

From Truth Tables to Gate Implementation

Given the truth table of a Boolean function *f*, how do we implement the truth table using logic gates?

Truth Table

X	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

What is the logic expression of f?

What is the gate implementation of f?

To answer these questions, we need to define Minterms and Maxterms

Minterms and Maxterms

- Minterms are AND terms with every variable present in either true or complement form
- Maxterms are OR terms with every variable present in either true or complement form
 - Minterms and Maxterms for 2 variables *x* and *y*

X	У	index	Minterm	Maxterm
0	0	0	$m_0 = x'y'$	$M_0 = x + y$
0	1	1	$m_1 = x'y$	$M_1 = x + y'$
1	0	2	$m_2 = xy'$	$M_2 = x' + y$
1	1	3	$m_3 = xy$	$M_3 = x' + y'$

• For *n* variables, there are 2^n Minterms and Maxterms

Minterms and Maxterms for 3 Variables

x	У	z	index	Minterm	Maxterm
0	0	0	0	$m_0 = x'y'z'$	$M_0 = x + y + z$
0	0	1	1	$m_1 = x'y'z$	$M_1 = x + y + z'$
0	1	0	2	$m_2 = x'yz'$	$M_2 = x + y' + z$
0	1	1	3	$m_3 = x'yz$	$M_3 = x + y' + z'$
1	0	0	4	$m_4 = xy'z'$	$M_4 = x' + y + z$
1	0	1	5	$m_5 = xy'z$	$M_5 = x' + y + z'$
1	1	0	6	$m_6 = xyz'$	$M_6 = x' + y' + z$
1	1	1	7	$m_7 = xyz$	$M_7 = x' + y' + z'$

Maxterm M_i is the **complement** of Minterm m_i

$$M_i = m_i'$$
 and $m_i = M_i'$

Purpose of the Index

- Minterms and Maxterms are designated with an index
- The index for the Minterm or Maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true or complemented form
- For Minterms:
 - \diamond '1' means the variable is **Not Complemented**
 - ♦ '0' means the variable is Complemented
- For Maxterms:
 - ♦ '0' means the variable is Not Complemented

Sum-Of-Minterms (SOM) Canonical Form

Truth Table

хуz	f	Minterm
000	0	
001	0	
010	1	$m_2 = x'yz'$
011	1	$m_3 = x'yz$
100	0	
101	1	$m_5 = xy'z$
1 1 0	0	
1 1 1	1	$m_7 = xyz$

Sum of Minterm entries that evaluate to '1'

Focus on the '1' entries

$$f = m_2 + m_3 + m_5 + m_7$$

$$f = \sum (2, 3, 5, 7)$$

$$f = x'yz' + x'yz + xy'z + xyz$$

Examples of Sum-Of-Minterms

I(a, b, c, d) = a'b'cd' + a'b'cd + a'bcd' + ab'cd' + ab'cd'

♦
$$g(a, b, c, d) = \sum (0, 1, 12, 15)$$

♦
$$g(a, b, c, d) = m_0 + m_1 + m_{12} + m_{15}$$

$$g(a,b,c,d) = a'b'c'd' + a'b'c'd + abc'd' + abcd$$

Product-Of-Maxterms (POM) Canonical Form

Truth Table

хуz	f	Maxterm	Draduat of Maxtarm antrian
000	0	$M_0 = x + y + z$	Product of Maxterm entries
001	0	$M_1 = x + y + z'$	that evaluate to U
010	1		
011	1		Focus on the '0' entries
100	0	$M_4 = x' + y + z$	$f = M_0 \cdot M_1 \cdot M_4 \cdot M_6$
101	1		J 110 11 114 116
110	0	$M_6 = x' + y' + z$	$f = \prod (0, 1, 4, 6)$
111	1		

$$f = (x + y + z)(x + y + z')(x' + y + z)(x' + y' + z)$$

Examples of Product-Of-Maxterms

$$\bigstar f(a, b, c, d) = \prod (1, 3, 11)$$

$$\bigstar f(a, b, c, d) = M_1 \cdot M_3 \cdot M_{11}$$

$$g(a,b,c,d) = \prod(0,5,13)$$

$$\clubsuit g(a, b, c, d) = M_0 \cdot M_5 \cdot M_{13}$$

$$f(a, b, c, d) = (a + b + c + d)(a + b' + c + d')(a' + b' + c + d')$$

Conversions between Canonical Forms

 \clubsuit The same Boolean function *f* can be expressed in two ways:

 $f = m_0 + m_2 + m_3 + m_5 + m_7 = \sum (0, 2, 3, 5, 7)$

- ♦ Sum-of-Minterms
- ♦ Product-of-Maxterms $f = M_1 \cdot M_4 \cdot M_6 = \prod (1, 4, 6)$

Truth Table

x y	/ Z	f	Minterms	Maxterms
0 6	0 6	1	$m_0 = x'y'z'$	
0 0	91	0		$M_1 = x + y + z'$
0 1	L 0	1	$m_2 = x'yz'$	
0 1	L 1	1	$m_3 = x'yz$	
1 (0 6	0		$M_4 = x' + y + z$
1 (91	1	$m_5 = xy'z$	
1 1	L 0	0		$M_6 = x' + y' + z$
1 1	l 1	1	$m_7 = xyz$	

Function Complement

Truth Table

X	У	Z	f	f'
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

Given a Boolean function f

$$f(x, y, z) = \sum (0, 2, 3, 5, 7) = \prod (1, 4, 6)$$

Then, the complement f' of function f $f'(x, y, z) = \prod (0, 2, 3, 5, 7) = \sum (1, 4, 6)$

The complement of a function expressed by a Sum of Minterms is the Product of Maxterms with the same indices. Interchange the symbols Σ and Π , but keep the same list of indices.

Summary of Minterms and Maxterms

- ✤ There are 2ⁿ Minterms and Maxterms for Boolean functions with *n* variables, indexed from 0 to 2ⁿ – 1
- Minterms correspond to the 1-entries of the function
- Maxterms correspond to the **0-entries** of the function
- Any Boolean function can be expressed as a Sum-of-Minterms and as a Product-of-Maxterms
- For a Boolean function, given the list of Minterm indices one can determine the list of Maxterms indices (and vice versa)
- The complement of a Sum-of-Minterms is a Product-of-Maxterms with the same indices (and vice versa)

Sum-of-Products and Products-of-Sums

- Canonical forms contain a larger number of literals
 - ♦ Because the Minterms (and Maxterms) must contain, by definition, all the variables either complemented or not
- Another way to express Boolean functions is in **standard** form
- Two standard forms: Sum-of-Products and Product-of -Sums
- Sum of Products (SOP)
 - ♦ Boolean expression is the ORing (sum) of AND terms (products)
 - ♦ Examples: $f_1 = xy' + xz$ $f_2 = y + xy'z$
- Products of Sums (POS)
 - ♦ Boolean expression is the ANDing (product) of OR terms (sums)
 - ♦ Examples: $f_3 = (x + z)(x' + y')$ $f_4 = x(x' + y' + z)$

Two-Level Gate Implementation

Two-Level vs. Three-Level Implementation

- ♦ h = ab + cd + ce (6 literals) is a sum-of-products
- ✤ *h* may also be written as: h = ab + c(d + e) (5 literals)
- ♦ However, h = ab + c(d + e) is a non-standard form

 \Rightarrow h = ab + c(d + e) is not a sum-of-products nor a product-of-sums

2-level implementation

3-level implementation h = ab + c(d + e)

