
The Karnaugh Map

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

� Boolean Function Minimization

� The Karnaugh Map (K-Map)

� Two, Three, and Four-Variable K-Maps

� Prime and Essential Prime Implicants

� Minimal Sum-of-Products and Product-of-Sums

� Don't Cares

� Five and Six-Variable K-Maps

� Multiple Outputs

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Boolean Function Minimization

� Complexity of a Boolean function is directly related to the

complexity of the algebraic expression

� The truth table of a function is unique

� However, the algebraic expression is not unique

� Boolean function can be simplified by algebraic manipulation

� However, algebraic manipulation depends on experience

� Algebraic manipulation does not guarantee that the simplified

Boolean expression is minimal

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Example: Sum of Minterms

� Sum-of-Minterms has 15 literals � Can be simplified

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 1 �1 = �′�′�
0 1 0 1 �2 = �′��′
0 1 1 1 �3 = �′��
1 0 0 0

1 0 1 1 �5 = ��′�
1 1 0 0

1 1 1 1 �7 = ���

Focus on the ‘1’ entries

� = �1+�� +�� +�� +��

� =� 1, 2, 3, 5, 7

� = ����� + ����� +
���� + ���� + ���

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Algebraic Manipulation
� Simplify: � = ����� + ����� + ���� + ���� + ��� (15 literals)

� = ����� + ����� + ���� + ���� + ��� (Sum-of-Minterms)

� = ����� + ���� + ����′ + ���� + ��� Reorder

� = ��� �� + � + ����� + ��(�� + �) Distributive · over +

� = ��� + ����� + �� Simplify (7 literals)

� = ��� + �� + ����� Reorder

� = (�� + �)� + ����� Distributive · over +

� = � + ����� Simplify (4 literals)

� = (� + ���)(� + ��) Distributive + over ·

� = � + ��� Simplify (3 literals)

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Drawback of Algebraic Manipulation

� No clear steps in the manipulation process

� Not clear which terms should be grouped together

� Not clear which property of Boolean algebra should be used next

� Does not always guarantee a minimal expression

� Simplified expression may or may not be minimal

� Different steps might lead to different non-minimal expressions

� However, the goal is to minimize a Boolean function

� Minimize the number of literals in the Boolean expression

� The literal count is a good measure of the cost of logic implementation

� Proportional to the number of transistors in the circuit implementation

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Karnaugh Map

� Called also K-map for short

� The Karnaugh map is a diagram made up of squares

� It is a reorganized version of the truth table

� Each square in the Karnaugh map represents a minterm

� Adjacent squares differ in the value of one variable

� Simplified expressions can be derived from the Karnaugh map

� By recognizing patterns of squares

� Simplified sum-of-products expression (AND-OR circuits)

� Simplified product-of-sums expression (OR-AND circuits)

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Next . . .

� Boolean Function Minimization

� The Karnaugh Map (K-Map)

� Two, Three, and Four-Variable K-Maps

� Prime and Essential Prime Implicants

� Minimal Sum-of-Products and Product-of-Sums

� Don't Cares

� Five and Six-Variable K-Maps

� Multiple Outputs

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Two-Variable Karnaugh Map

� Minterms �0 and �1 are adjacent (also, �2 and �3)

� They differ in the value of variable �

� Minterms �0 and �2 are adjacent (also, �1 and �3)

� They differ in the value of variable �

m3m21

m1m00

10
x

y

x yx y'1

x' yx' y'0

10
x

y

Two-variable K -map

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

From a Truth Table to Karnaugh Map

� Given a truth table, construct the corresponding K-map

� Copy the function values from the truth table into the K-map

� Make sure to copy each value into the proper K-map square

x y f

0 0 1

0 1 0

1 0 1

1 1 1

Truth Table

111

010

10
x

y

K-map

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

K-Map Function Minimization

� Two adjacent cells containing 1's can be combined

� � = �0+�2+�3

� � = �′�′ + ��′ + �� (6 literals)

� �0+�2 = �′�′ + ��′ = (�′ + �)�′ = �′

� �2+�3 = ��′ + �� = �(�′ + �) = �

� Therefore, � can be simplified as: � = � + �′ (2 literals)

111

010

10
x

y

K-map

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

Three-Variable Karnaugh Map
� Have eight squares (for the 8 minterms), numbered 0 to 7

� The last two columns are not in numeric order: 11, 10
� Remember the numbering of the squares in the K-map

� Each square is adjacent to three other squares

� Minterms in adjacent squares can always be combined
� This is the key idea that makes the K-map work

� Labeling of rows and columns is also useful

00 01 11 10

0 �0 �1 �3 �2

1 �4 �5 �7 �6

�

��
00 01 11 10

0 �����′ ����� ���� ����′

1 ����′ ���� ��� ���′

�
�� ��′

� �′�′

�′

�

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Simplifying a Three-Variable Function

Simplify the Boolean function: �(�, �, �) = ∑(3, 4, 5, 7)

� = �′�� + ��′�′ + ��′� + ��� (12 literals)

1. Mark ‘1’ all the K-map squares that represent function �

2. Find possible adjacent squares

�′�� + ��� = (�′ + �)�� = ��

��′�′ + ��′� = ��′(�′ + �) = ��′

Therefore, � = ��′ + �� (4 literals)

00 01 11 10

0

1

�
�� ��′

� �′�′

�′

�

0 0 1 0

1 1 1 0

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

Simplifying a Three-Variable Function (2)

Here is a second example: �(�, �, �) = ∑(3, 4, 6, 7)

� = �′�� + ��′�′ + ���′ + ��� (12 literals)

Learn the locations of the 8 indices based on the variable order

�′�� + ��� = (�′ + �)�� = ��

Corner squares can be combined

��′�′ + ���′ = ��′(�′ + �) = ��′

Therefore, � = ��� + �� (4 literals)

00 01 11 10

0

1

�
�� ��′

� �′�′

�′

�

0 0 1 0

1 0 1 1

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Combining Squares on a 3-Variable K-Map

� By combining squares, we reduce number of literals

in a product term, thereby reducing the cost

� On a 3-variable K-Map:

� One square represents a minterm with 3 variables

� Two adjacent squares represent a term with 2 variables

� Four adjacent squares represent a term with 1 variable

� Eight adjacent square is the constant ‘1’ (no variables)

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Example of Combining Squares

� Consider the Boolean function: �(�, �, �) = ∑(2, 3, 5, 6, 7)

� � = �′��′ + �′�� + ��′� + ���′ + ���

00 01 11 10

0

1

�
�� ��′

� �′�′

�′

�

0 0 1 1

0 1 1 1

� The four minterms that form

the 2×2 red square are

reduced to the term �
� The two minterms that form

the blue rectangle are

reduced to the term ��
� Therefore: � = � + ��

���� + ����′ + ��� + ���′
= �′�(� + �′) + ��(� + �′)
= �′� + �� = (�′ + �)� = �

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Minimal Sum-of-Products Expression

Consider the function: �(�, �, �) = ∑(0, 1, 2, 4, 6, 7)

Find a minimal sum-of-products (SOP) expression

Solution:

Red block: term = �′

Green block: term = �′�′

Blue block: term = ��

Minimal sum-of-products: � = �� + ���� + �� (5 literals)

00 01 11 10

0

1

�
�� ��′

� �′�′

�′

�

1 1 0 1

1 0 1 1

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Four-Variable Karnaugh Map

4 variables � 16 squares

Remember the numbering of
the squares in the K-map

Each square is adjacent to
four other squares

��� = �������� � � = �������

��� = �����	�� ��� = �����	�

�"� = ���	�′�� ��� = ���	�′�

�#� = ���	�	�� ��� = ���	�	�

�$� = �	������ �%� = �	�����

� � = �	����� � = �	���	�

� � = �	�	�′�� � � = �	�	�′�

� " = �	�	�	�� � � = �	�	�	�

00 01 11 10

00

��

�� ��′

� �′�′

&′

&

�� � �� ��

�" �� �� �#

�′

�

�′

01

11

10

� � � � � � � "

�$ �% � � �

Notice the order of Rows 11 and 10
and the order of columns 11 and 10

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Combining Squares on a 4-Variable K-Map

� On a 4-variable K-Map:

� One square represents a minterm with 4 variables

� Two adjacent squares represent a term with 3 variables

� Four adjacent squares represent a term with 2 variables

� Eight adjacent squares represent a term with 1 variable

� Combining all 16 squares is the constant ‘1’ (no variables)

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Combining Eight Squares

00 01 11 10

00

��

�� ��′

� �′�′

&′

&

�� � �� ��

�" �� �� �#

�′

�

�′

01

11

10

� � � � � � � "

�$ �% � � �

Term = �′

Term = �

Term = �′

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

Combining Four Squares

00 01 11 10

00

��

�� ��′

� �′�′

&′

&

�� � �� ��

�" �� �� �#

�′

�

�′

01

11

10

� � � � � � � "

�$ �% � � �

Term = ��′

Term = ��

Term = ���′

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Combining Two Squares

00 01 11 10

00

��

�� ��′

� �′�′

&′

&

�� � �� ��

�" �� �� �#

�′

�

�′

01

11

10

� � � � � � � "

�$ �% � � �

Term = ����′

Term = �′��

Term = ����
Term = ����′

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Simplifying a 4-Variable Function

Given �(�, �, �, �) = ∑(0, 2, 4, 5, 6, 7, 8, 12)

Draw the K-map for function �

Minimize � as sum-of-products

Solution:

� = �′� + �′�′ + �′�′

00 01 11 10

00

��
�� ��′

� �′�′

&′

&

1 0 0 1

1 1 1 1

�′

�

�′

01

11

10

1 0 0 0

1 0 0 0Term = ���′

Term = ���

Term = ���′

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

Next . . .

� Boolean Function Minimization

� The Karnaugh Map (K-Map)

� Two, Three, and Four-Variable K-Maps

� Prime and Essential Prime Implicants

� Minimal Sum-of-Products and Product-of-Sums

� Don't Cares

� Five and Six-Variable K-Maps

� Multiple Outputs

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

Prime Implicants

� Prime Implicant: a product term obtained by combining the

maximum number of adjacent squares in the K-map

� The number of combined squares must be a power of 2

� Essential Prime Implicant: is a prime implicant that covers at

least one minterm not covered by the other prime implicants

� The prime implicants and essential prime implicants can be

determined by inspecting the K-map

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

�((,), *, +) = ∑(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

)+

)′+′

()′

(+

*+

)�*
Six Prime Implicants

)+,)′+′, ()′, (+, *+,)′*

Only Two Prime

Implicants are essential

)+ and)�+′

00 01 11 10

00
()
*+

1 1 1

1 101

11

10

1 1

1 1 1 1

K-Map

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

Simplification Procedure Using the K-Map

1. Find all the essential prime implicants

� Covering maximum number (power of 2) of 1's in the K-map

� Mark the minterm(s) that make the prime implicants essential

2. Add prime implicants to cover the function

� Choose a minimal subset of prime implicants that cover all remaining 1's

� Make sure to cover all 1's not covered by the essential prime implicants

� Minimize the overlap among the additional prime implicants

� Sometimes, a function has multiple simplified expressions

� You may be asked to list all the simplified sum-of-product expressions

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 28

Obtaining All Minimal SOP Expressions

Consider again: �((,), *, +) = ∑(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

Obtain all minimal sum-of-products (SOP) expressions

()′
(+

*+

)�*

)+
)′+′

Two essential Prime

Implicants:)+ and)�+′00 01 11 10

00
()
*+

1 1 1

1 101

11

10

1 1

1 1 1 1

K-Map

Four possible solutions:

� =)+ +)′+′ + *+ + (+
� =)+ +)′+′ + *+ + ()′
� =)+ +)′+′ +)′* + ()′
� =)+ +)′+′ +)′* + (+

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 29

Product-of-Sums (POS) Simplification

� All previous examples were expressed in Sum-of-Products form

� With a minor modification, the Product-of-Sums can be obtained

� Example: �((,), *, +) = ∑(1, 2, 3, 9, 10, 11, 13, 14, 15)

00 01 11 10

00
()
*+

1 1 1

01

11

10

1 1

1 1

1

1

K-Map of -

00 01 11 10

00
()
*+

1

01

11

10

1

1

1

1 1 1

K-Map of -′

� = (+ + (* +)′+ +)′*
Minimal Sum-of-Products = 8 literals

�� = *�+� + (�)
� = (* + +)((+)�)

All prime
implicants

are essential

M
in

im
al

 P
ro

du
ct

-o
f-

S
um

s
=

 4
 li

te
ra

ls

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 30

Product-of-Sums Simplification Procedure

1. Draw the K-map for the function �

� Obtain a minimal Sum-of-Products (SOP) expression for �

2. Draw the K-map for �′, replacing the 0's of � with 1's in �′
3. Obtain a minimal Sum-of-Products (SOP) expression for �′
4. Use DeMorgan's theorem to obtain � = (�′)′

� The result is a minimal Product-of-Sums (POS) expression for �

5. Compare the cost of the minimal SOP and POS expressions

� Count the number of literals to find which expression is minimal

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 31

Next . . .

� Boolean Function Minimization

� The Karnaugh Map (K-Map)

� Two, Three, and Four-Variable K-Maps

� Prime and Essential Prime Implicants

� Minimal Sum-of-Products and Product-of-Sums

� Don't Cares

� Five and Six-Variable K-Maps

� Multiple Outputs

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 32

Don't Cares

�Sometimes, a function table may contain entries for which:

� The input values of the variables will never occur, or

� The output value of the function is never used

� In this case, the output value of the function is not defined

�The output value of the function is called a don't care

�A don't care is an X value that appears in the function table

�The X value can be later chosen to be 0 or 1

� To minimize the function implementation

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 33

Example of a Function with Don't Cares

� Consider a function � defined over BCD inputs

� The function input is a BCD digit from 0 to 9

� The function output is 0 if the BCD input is 0 to 4

� The function output is 1 if the BCD input is 5 to 9

� The function output is X (don't care) if the input is

10 to 15 (not BCD)

� � = ∑ 5, 6, 7, 8, 9 + ∑ (10, 11, 12, 13, 14, 15)./

a b c d f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

Truth Table

Minterms Don't Cares

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 34

Minimizing Functions with Don't Cares

Consider: � = ∑ 5, 6, 7, 8, 9 + ∑ (10, 11, 12, 13, 14, 15)./

If the don't cares were treated as 0's we get:

� = (′)+ + (′)* + ()′*′ (9 literals)

If the don't cares were treated as 1's we get:

� = (+)+ +)* (5 literals)
00 01 11 10

00
()
*+

01

11

10

K-Map of -

0 0 00

1 1 10

X X XX

1 X X1

The don't care values can be
selected to be either 0 or 1, to
produce a minimal expression

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 35

Simplification Procedure with Don't Cares

1. Find all the essential prime implicants

� Covering maximum number (power of 2) of 1's and X's (don't cares)

� Mark the 1's that make the prime implicants essential

2. Add prime implicants to cover the function

� Choose a minimal subset of prime implicants that cover all remaining 1's

� Make sure to cover all 1's not covered by the essential prime implicants

� Minimize the overlap among the additional prime implicants

� You need not cover all the don't cares (some can remain uncovered)

� Sometimes, a function has multiple simplified expressions

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 36

Minimizing Functions with Don't Cares (2)

Simplify: 0 = ∑ 1, 3, 7, 11, 15 + ∑ (0, 2, 5)./

Solution 1: 0 = *+ + (′)′ (4 literals)

Solution 2: 0 = *+ + (�+ (4 literals)

00 01 11 10

00
()
*+

01

11

10

K-Map of 1

1 1 XX

X 1 00

0 1 00

0 1 00

00 01 11 10

00
()
*+

01

11

10

K-Map of 1

1 1 XX

X 1 00

0 1 00

0 1 00

Not all don't
cares need
be covered

Prime
Implicant *+
is essential

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 37

Minimal Product-of-Sums with Don't Cares

Simplify: 0 = ∑ 1, 3, 7, 11, 15 + ∑ (0, 2, 5)./

Obtain a product-of-sums minimal expression

Solution: 0′ = ∑ 4, 6, 8, 9, 10, 12, 13, 14 + ∑ (0, 2, 5)./

Minimal 0′ = +′ + (*′ (3 literals)

Minimal product-of-sums:

0 = +((� + *) (3 literals)

00 01 11 10

00
()
*+

01

11

10

K-Map of 1′

0 0 XX

X 0 11

1 0 11

1 0 11

The minimal sum-of-products
expression for 0 had 4 literals

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 38

Next . . .

� Boolean Function Minimization

� The Karnaugh Map (K-Map)

� Two, Three, and Four-Variable K-Maps

� Prime and Essential Prime Implicants

� Minimal Sum-of-Products and Product-of-Sums

� Don't Cares

� Five and Six-Variable K-Maps

� Multiple Outputs

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 39

Five-Variable Karnaugh Map
� Consists of 25 = 32 squares, numbered 0 to 31

� Remember the numbering of squares in the K-map

� Can be visualized as two layers of 16 squares each

� Top layer contains the squares of the first 16 minterms ((= 0)

� Bottom layer contains the squares of the last 16 minterms ((= 1)

00 01 11 10

00

)*

+2
(= 0

�� � �� ��

�" �� �� �#01

11

10

� � � � � � � "

�$ �% � � �

00 01 11 10

00

)*

+2
(= 1

� # � � � % � $

��� �� ��� ���01

11

10

��$ ��% �� ���

��" ��� ��� ��#

Each square is adjacent
to 5 other squares:
4 in the same layer and
1 in the other layer:
�0 is adjacent to �16

�1 is adjacent to �17

�4 is adjacent to �20 …

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 40

Example of a Five-Variable K-Map

Given: �((,), *, +, 2) = ∑(0, 1, 8, 9, 16, 17, 22, 23, 24, 25)

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for �

Solution: �	 = 	*′+′ + ()′*+ (6 literals)

00 01 11 10

00

)*
+2 (= 0

01

11

10

00 01 11 10

00

)*
+2 (= 1

01

11

10

5-Variable K -Map

1 1 1 1

1 1 1 1

1 1
′+′ ()�+

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 41

Five-Variable K-Map with Don't Cares

0((,), *, +, 2) = ∑ (3, 6, 7, 11, 24, 25, 27, 28, 29) + ∑ (2, 8, 9, 12, 13, 26)./

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for 0

Solution: 0	 =)+� + (�)�+ +)*�2 (8 literals)

)+′

00 01 11 10

00

)*

+2
(= 0

01

11

10

00 01 11 10

00

)*

+2
(= 1

01

11

10

5-Variable K -Map

1

X X 1 1

X X 1 1

1 1 X

X

1 1
(′)′+

)*�2

All prime
implicants

are essential

Not covered

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 42

Six-Variable Karnaugh Map

� Consists of 26 = 64 squares, numbered 0 to 63

� Can be visualized as four layers of 16 squares each

� Four layers: () = 00, 01, 11, 10 (Notice that layer 11 comes before 10)

� Each square is adjacent to 6 other squares:

� 4 squares in the same layer and 2 squares in the above and below layers

00 01 11 10

00

*+

2�
() = 00

�� � �� ��

�" �� �� �#01

11

10

� � � � � � � "

�$ �% � � �

00 01 11 10

() = 01

� # � � � % � $

��� �� ��� ���

��$ ��% �� ���

��" ��� ��� ��#

00 01 11 10

() = 11

�"$ �"% �� ���

��� ��� ��� ��"

�#� �# �#� �#�

��# ��� ��% ��$

00 01 11 10

() = 10

��� ��� ��� ��"

��# ��� ��% ��$

�"" �"� �"� �"#

�"� �" �"� �"�

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 43

Example of a Six-Variable K-Map

ℎ((,), *, +, 2, �) = ∑(2, 10, 11, 18, 21, 23, 29, 31, 34, 41, 50, 53, 55, 61, 63)

Draw the 6-Variable K-Map

Obtain a minimal Sum-of-Products expression for ℎ

Solution: ℎ	 = 	 *�+�2�� +)	+	� + (�)�*	+�2 + ()′	*	+�2�� (18 literals)

00 01 11 10

00

*+

2�
() = 00

01

11

10

00 01 11 10

() = 01

00 01 11 10

() = 11

00 01 11 10

() = 10

1 1 1

1

1

1

1

1

1

1

1

111

1*′+′2�′

)+�

(�)�*	+�2 ()′	*	+�2��

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 44

Next . . .

� Boolean Function Minimization

� The Karnaugh Map (K-Map)

� Two, Three, and Four-Variable K-Maps

� Prime and Essential Prime Implicants

� Minimal Sum-of-Products and Product-of-Sums

� Don't Cares

� Five and Six-Variable K-Maps

� Multiple Outputs

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 45

Multiple Outputs

� Suppose we have two functions: �((,), *) and 0((,), *)

� Same inputs: (,), *, but two outputs: � and 0

� We can minimize each function separately, or

� Minimize � and 0 as one circuit with two outputs

� The idea is to share terms (gates) among � and 0

(
)
*

�

(
)
*

0

(
)
* 0

�

One circuit with
Two OutputsTwo separate circuits

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 46

Multiple Outputs: Example 1

Given: � (,), * = ∑(0, 2, 6, 7) and 0 (,), * = ∑(1, 3, 6, 7)

Minimize each function separately

Minimize both functions as one circuit

00 01 11 10

0

1

(
)*

1 0 0 1

0 0 1 1

K-Map of -

00 01 11 10

0

1

(
)*

0 1 1 0

0 0 1 1

K-Map of 1

� = (′*′ + ()

0 = (′* + ()

Common
Term = ()

O
ne

 c
irc

ui
t w

ith
tw

o
O

ut
pu

ts

0

(′
*′ �(
)
(′
*

(′
*′ �(
)
(′
* 0(
)

O
ne

 c
irc

ui
t

pe
r

fu
nc

tio
n

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 47

Multiple Outputs: Example 2

� (,), *, + = ∑(3, 5, 7, 10, 11, 14, 15), 0 (,), *, + = ∑(1, 3, 5, 7, 10, 14)

Draw the K-map and write minimal SOP expressions of � and 0

� = (′)+ + (* + *+ 0 = (′+ + (*+′
Extract the common terms of � and 0

1 1

00 01 11 10

00

()
*+

01

11

10

K-Map of -

1

1

1

1

1

00 01 11 10

00

()
*+

01

11

10

K-Map of 1

1 1

1

1

1 1

Common Terms

4 = (′+ and 4� = (*

Minimal � and 0
� = 4) + 4� + *+
0 = 4 + 4�+′

The Karnaugh Map COE 202 – Digital Logic Design © Muhamed Mudawar – slide 48

Common Terms � Shared Gates
Minimal � = (′)+ + (* + *+ Minimal 0 = (′+ + (*+′
Let 4 = (′+ and 4� = (* (shared by � and 0)

Minimal � = 4) + 4� + *+, Minimal 0 = 4 + 4�+′

One Circuit
Two Shared Gates

*
+
(′)+ �
(
*

(*+′
0

(′
+

NO Shared Gates

�(′
+
(
*

)

+′

*
+

0

