The Karnaugh Map

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs

Boolean Function Minimization

- Complexity of a Boolean function is directly related to the complexity of the algebraic expression
- The truth table of a function is unique
- However, the algebraic expression is not unique
- Boolean function can be simplified by algebraic manipulation
- However, algebraic manipulation depends on experience
- Algebraic manipulation does not guarantee that the simplified Boolean expression is minimal

Example: Sum of Minterms

Truth Table

хуz	f	Minterm		
000	0		Focus on the '1' entries	
001	1	$m_1 = x'y'z$	$f = m_1 + m_2 + m_3 + m_5 + m_7$	
010	1	$m_2 = x'yz'$	$j = m_1 + m_2 + m_3 + m_5 + m_7$	
011	1	$m_3 = x'yz$	$f = \sum (1, 2, 3, 5, 7)$	
100	0			
101	1	$m_5 = xy'z$		
110	0		f = x'y'z + x'yz' +	
111	1	$m_7 = xyz$	x'yz + xy'z + xyz	

✤ Sum-of-Minterms has 15 literals → Can be simplified

Algebraic Manipulation

Simplify: f = x'y'z + x'yz' + x'yz + xy'z + xyz (15 literals)

f = x'y'z + x'yz' + x'yz + xy'z + xyz f = x'y'z + x'yz + x'yz' + xy'z + xyz f = x'z(y' + y) + x'yz' + xz(y' + y)f = x'z + x'yz' + xz

- $f = x'z + x\overline{z + x'yz'}$
- f = (x' + x)z + x'yz'
- f = z + x'yz'
- f = (z + x'y)(z + z')
- f = z + x'y

(Sum-of-Minterms) Reorder Distributive \cdot over + Simplify (7 literals) Reorder Distributive • over + Simplify (4 literals) Distributive + over • Simplify (3 literals)

Drawback of Algebraic Manipulation

- No clear steps in the manipulation process
 - ♦ Not clear which terms should be grouped together
 - ♦ Not clear which property of Boolean algebra should be used next
- Does not always guarantee a minimal expression
 - ♦ Simplified expression may or may not be minimal
 - ♦ Different steps might lead to different non-minimal expressions
- However, the goal is to minimize a Boolean function
- Minimize the number of literals in the Boolean expression
 - ♦ The literal count is a good measure of the cost of logic implementation
 - ♦ Proportional to the number of transistors in the circuit implementation

Karnaugh Map

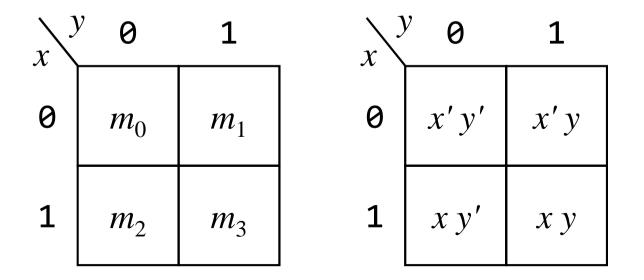
- Called also K-map for short
- The Karnaugh map is a diagram made up of squares
- It is a reorganized version of the truth table
- Each square in the Karnaugh map represents a minterm
- Adjacent squares differ in the value of one variable
- Simplified expressions can be derived from the Karnaugh map
 - \diamond By recognizing patterns of squares
- Simplified sum-of-products expression (AND-OR circuits)
- Simplified product-of-sums expression (OR-AND circuits)

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs

Two-Variable Karnaugh Map

- \clubsuit Minterms m_0 and m_1 are adjacent (also, m_2 and m_3)
 - \diamond They differ in the value of variable y
- Minterms m_0 and m_2 are adjacent (also, m_1 and m_3)
 - \diamond They differ in the value of variable x

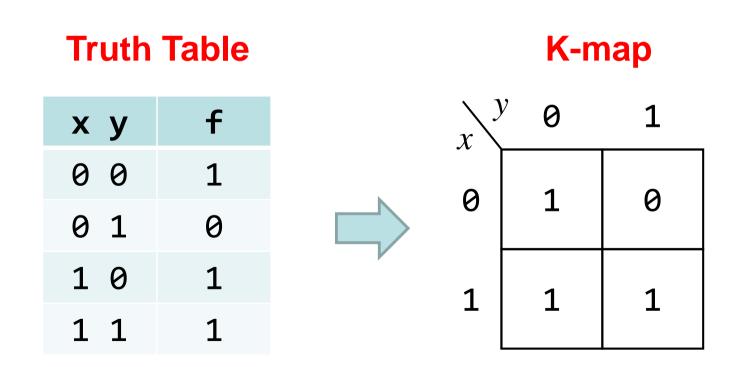
Two-variable K-map



From a Truth Table to Karnaugh Map

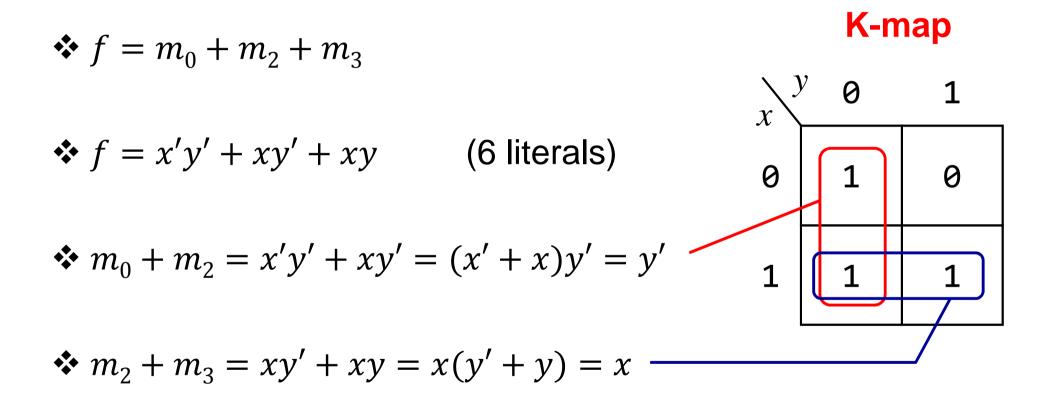
Given a truth table, construct the corresponding K-map

- Copy the function values from the truth table into the K-map
- Make sure to copy each value into the proper K-map square



K-Map Function Minimization

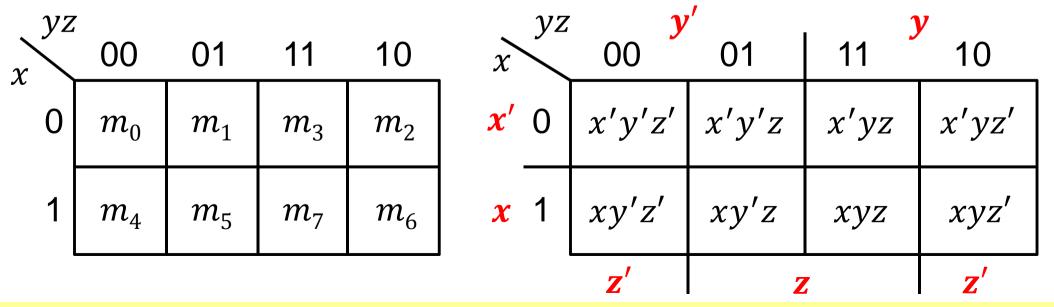
Two adjacent cells containing 1's can be combined



✤ Therefore, f can be simplified as: f = x + y' (2 literals)

Three-Variable Karnaugh Map

- Have eight squares (for the 8 minterms), numbered 0 to 7
- The last two columns are not in numeric order: 11, 10
 - ♦ Remember the numbering of the squares in the K-map
- Each square is adjacent to three other squares
- Labeling of rows and columns is also useful

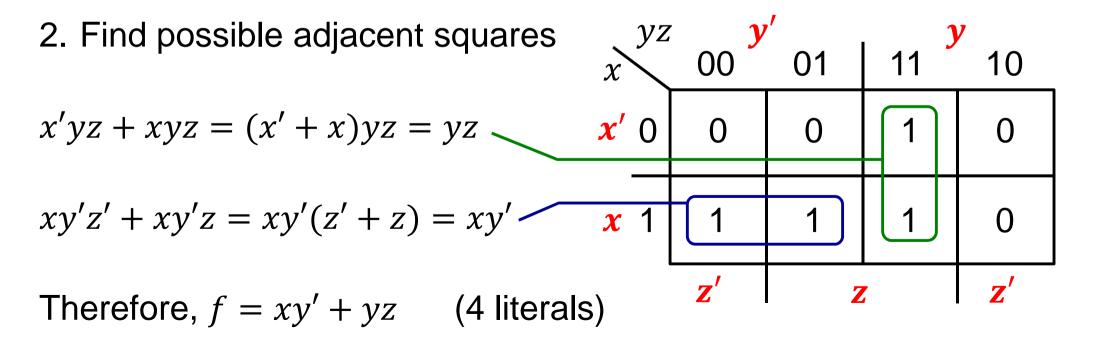


Simplifying a Three-Variable Function

Simplify the Boolean function: $f(x, y, z) = \sum (3, 4, 5, 7)$

f = x'yz + xy'z' + xy'z + xyz (12 literals)

1. Mark '1' all the K-map squares that represent function f



Simplifying a Three-Variable Function (2)

Here is a second example: $f(x, y, z) = \sum (3, 4, 6, 7)$

f = x'yz + xy'z' + xyz' + xyz (12 literals)

Learn the locations of the 8 indices based on the variable order

$$x'yz + xyz = (x' + x)yz = yz$$

$$yz \quad y' \quad y$$

$$x' \quad 0 \quad 0 \quad 0 \quad 1 \quad 10$$
Corner squares can be combined
$$x' \quad 0 \quad 0 \quad 0 \quad 1 \quad 0$$

$$xy'z' + xyz' = xz'(y' + y) = xz'$$

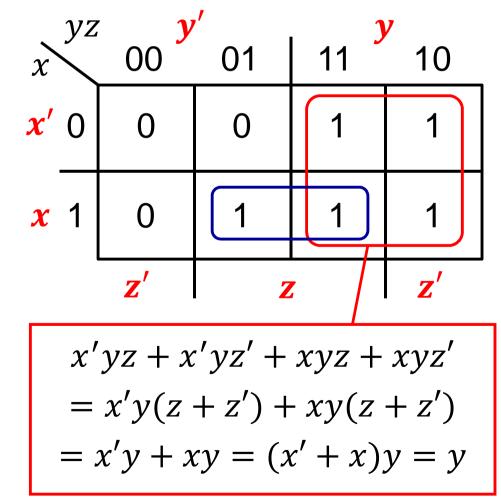
$$x \quad 1 \quad 1 \quad 0 \quad 1 \quad 1$$
Therefore, $f = xz' + yz$
(4 literals)
$$z' \quad z \quad z'$$

Combining Squares on a 3-Variable K-Map

- By combining squares, we reduce number of literals in a product term, thereby reducing the cost
- On a 3-variable K-Map:
 - ♦ One square represents a minterm with 3 variables
 - ♦ Two adjacent squares represent a term with 2 variables
 - ♦ Four adjacent squares represent a term with 1 variable
 - ♦ Eight adjacent square is the constant '1' (no variables)

Example of Combining Squares

- ♦ Consider the Boolean function: $f(x, y, z) = \sum (2, 3, 5, 6, 7)$
- $\clubsuit f = x'yz' + x'yz + xy'z + xyz' + xyz$
- The four minterms that form the 2×2 red square are reduced to the term y
- The two minterms that form the blue rectangle are reduced to the term xz
- ***** Therefore: f = y + xz



Minimal Sum-of-Products Expression

Consider the function: $f(x, y, z) = \sum (0, 1, 2, 4, 6, 7)$

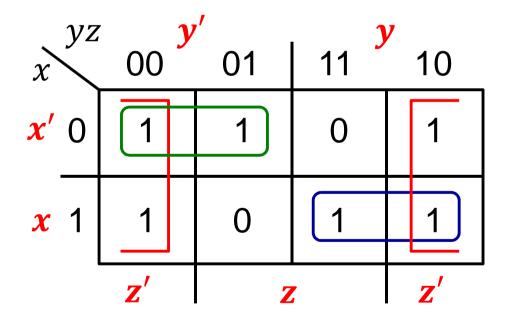
Find a minimal sum-of-products (SOP) expression

Solution:

Red block: term = z'

Green block: term = x'y'

Blue block: term = xy



Minimal sum-of-products: f = z' + x'y' + xy (5 literals)

Four-Variable Karnaugh Map

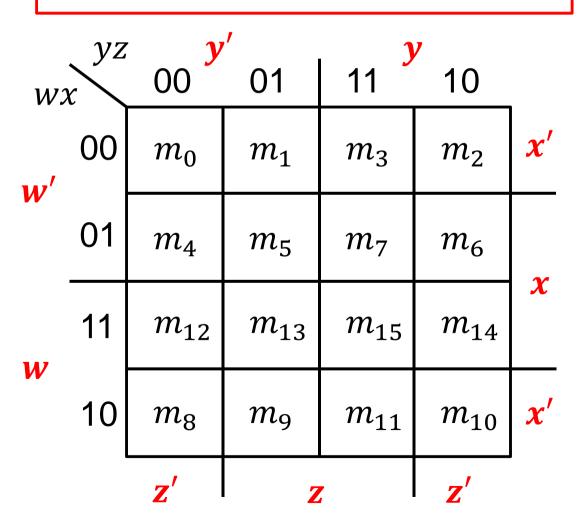
4 variables \rightarrow 16 squares Remember the numbering of

the squares in the K-map

Each square is adjacent to four other squares

$$\begin{array}{lll} m_0 &= w'x'y'z' & m_1 &= w'x'y'z \\ m_2 &= w'x'yz' & m_3 &= w'x'yz \\ m_4 &= w'xy'z' & m_5 &= w'xy'z \\ m_6 &= w'xyz' & m_7 &= w'xyz \\ m_8 &= wx'y'z' & m_9 &= wx'y'z \\ m_{10} &= wx'yz' & m_{11} &= wx'yz \\ m_{12} &= wxy'z' & m_{13} &= wxy'z \\ m_{14} &= wxyz' & m_{15} &= wxyz \\ \end{array}$$

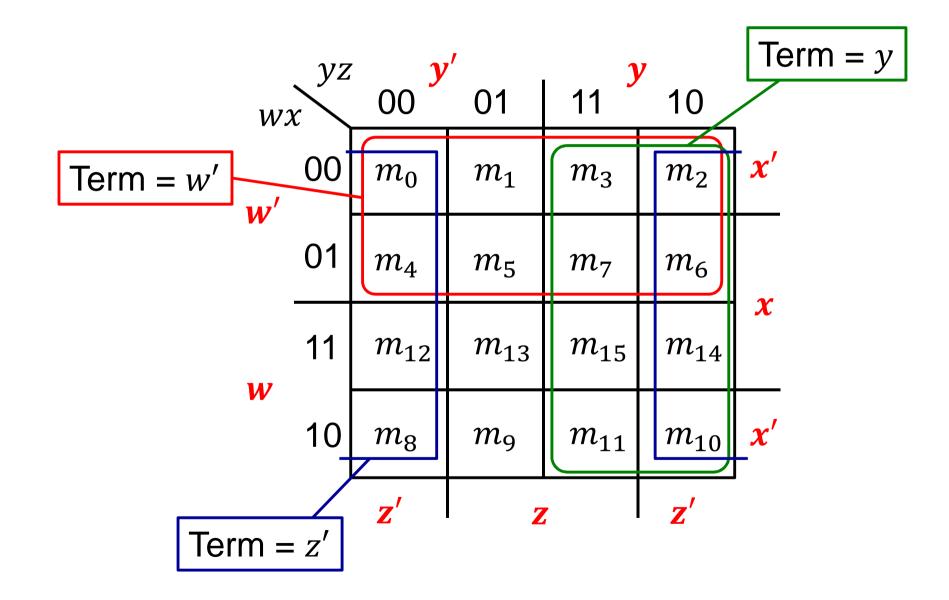
Notice the order of Rows 11 and 10 and the order of columns 11 and 10



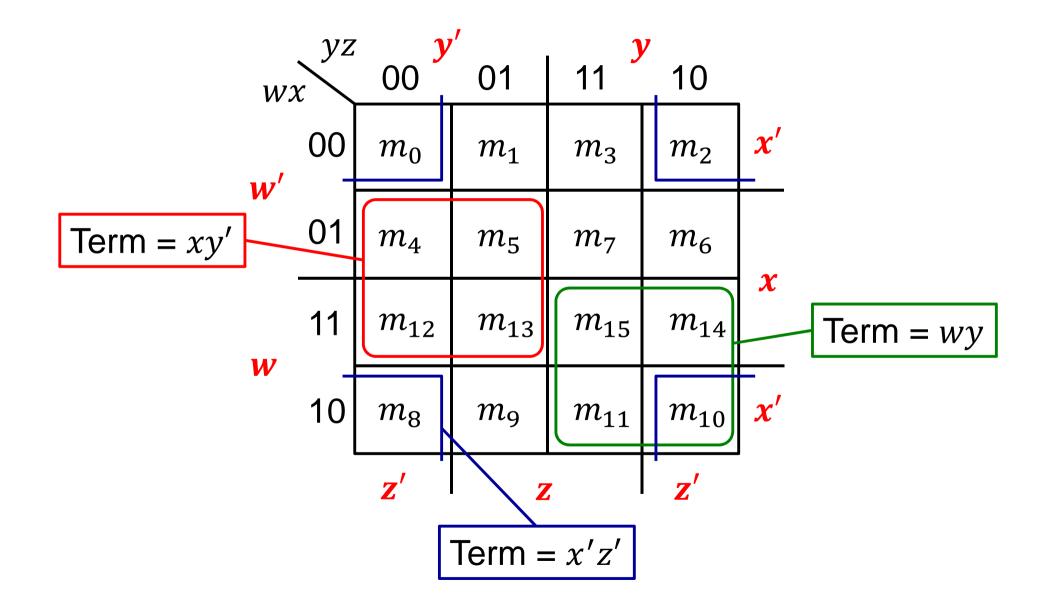
Combining Squares on a 4-Variable K-Map

- On a 4-variable K-Map:
 - ♦ One square represents a minterm with 4 variables
 - ♦ Two adjacent squares represent a term with 3 variables
 - ♦ Four adjacent squares represent a term with 2 variables
 - ♦ Eight adjacent squares represent a term with 1 variable
 - Combining all 16 squares is the constant '1' (no variables)

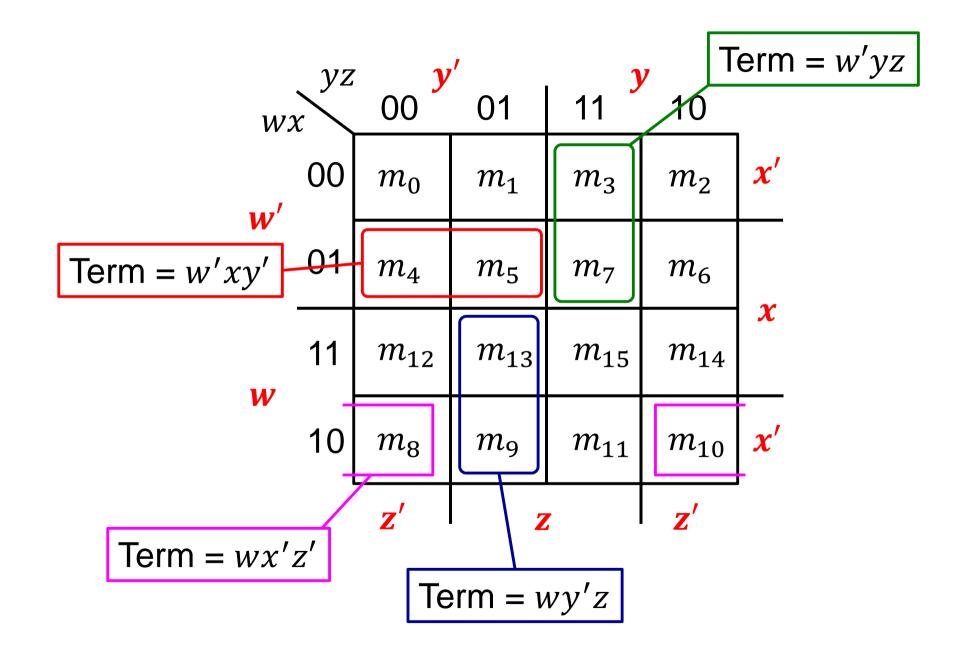
Combining Eight Squares



Combining Four Squares

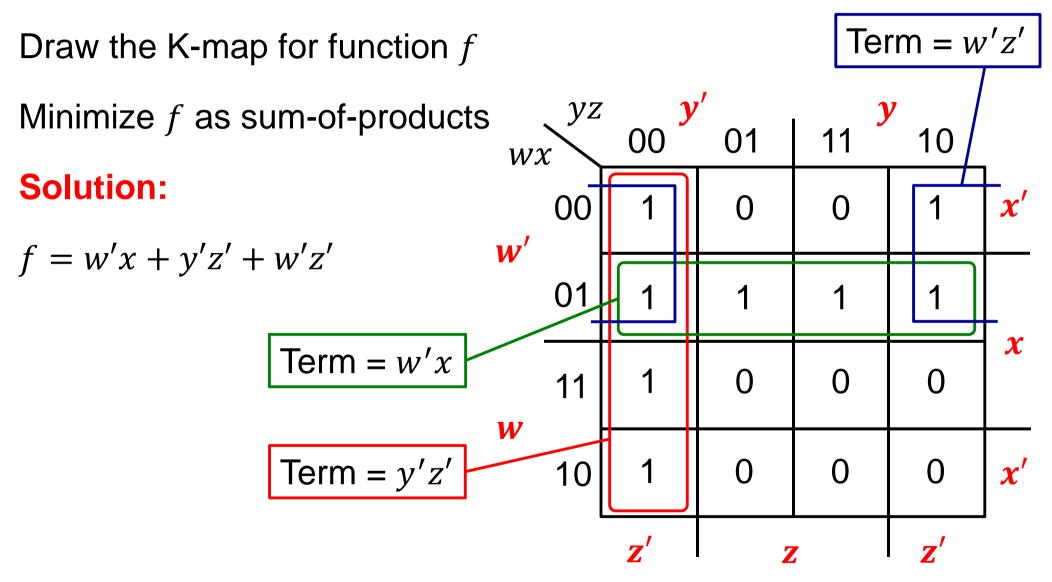


Combining Two Squares



Simplifying a 4-Variable Function

Given $f(w, x, y, z) = \sum (0, 2, 4, 5, 6, 7, 8, 12)$



- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs

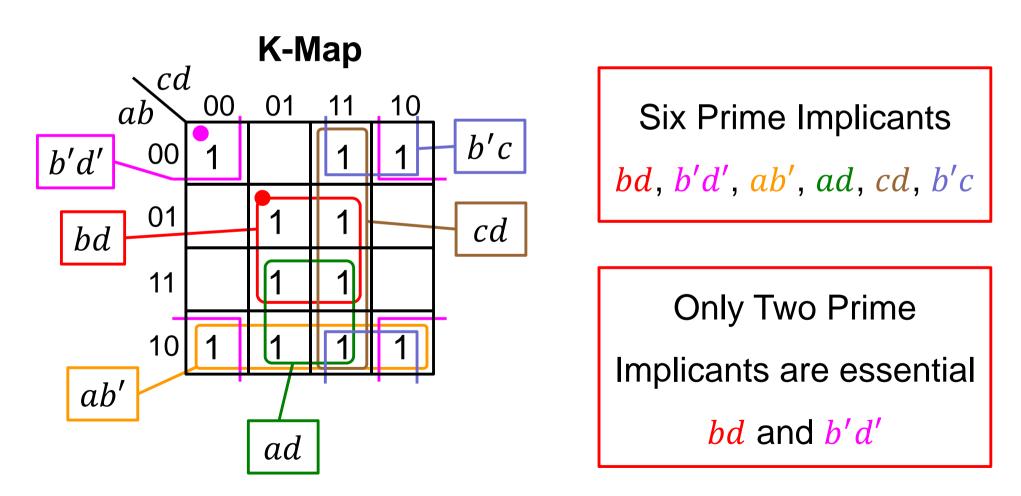
Prime Implicants

- Prime Implicant: a product term obtained by combining the maximum number of adjacent squares in the K-map
- The number of combined squares must be a power of 2
- Essential Prime Implicant: is a prime implicant that covers at least one minterm not covered by the other prime implicants
- The prime implicants and essential prime implicants can be determined by inspecting the K-map

Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

 $f(a, b, c, d) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$



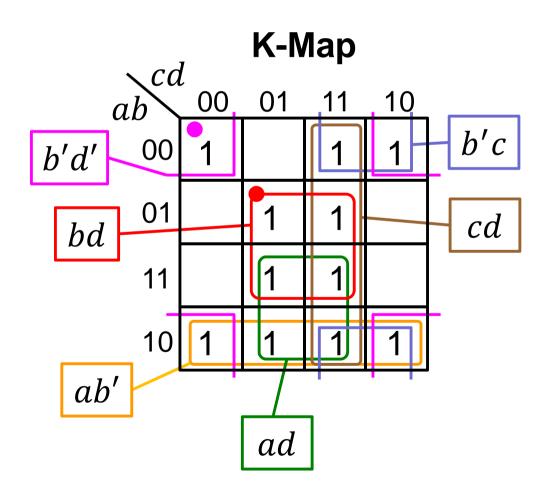
Simplification Procedure Using the K-Map

- 1. Find all the essential prime implicants
 - ♦ Covering maximum number (power of 2) of 1's in the K-map
 - ♦ Mark the minterm(s) that make the prime implicants essential
- 2. Add prime implicants to cover the function
 - ♦ Choose a minimal subset of prime implicants that cover all remaining 1's
 - ♦ Make sure to cover all 1's not covered by the essential prime implicants
 - ♦ Minimize the overlap among the additional prime implicants
- Sometimes, a function has multiple simplified expressions
 - ♦ You may be asked to list all the simplified sum-of-product expressions

Obtaining All Minimal SOP Expressions

Consider again: $f(a, b, c, d) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

Obtain all minimal sum-of-products (SOP) expressions



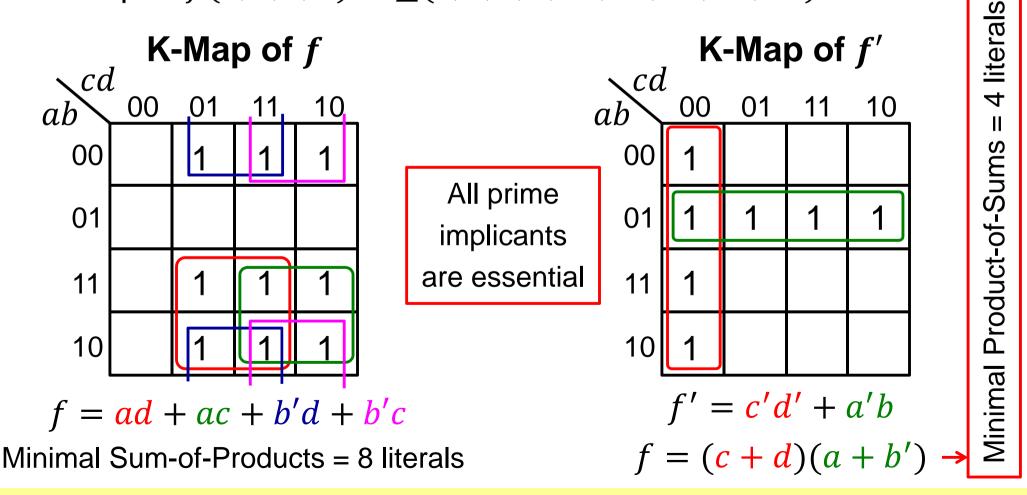
Two essential Prime

Implicants: bd and b'd'

Four possible solutions: f = bd + b'd' + cd + ad f = bd + b'd' + cd + ab' f = bd + b'd' + b'c + ab' f = bd + b'd' + b'c + ad

Product-of-Sums (POS) Simplification

- All previous examples were expressed in Sum-of-Products form
- With a minor modification, the Product-of-Sums can be obtained
- ♦ Example: $f(a, b, c, d) = \sum (1, 2, 3, 9, 10, 11, 13, 14, 15)$



Product-of-Sums Simplification Procedure

- 1. Draw the K-map for the function f
 - \diamond Obtain a minimal Sum-of-Products (SOP) expression for *f*
- 2. Draw the K-map for f', replacing the 0's of f with 1's in f'
- 3. Obtain a minimal Sum-of-Products (SOP) expression for f'
- 4. Use DeMorgan's theorem to obtain f = (f')'
 - \diamond The result is a minimal Product-of-Sums (POS) expression for *f*
- 5. Compare the cost of the minimal SOP and POS expressions
 - ♦ Count the number of literals to find which expression is minimal

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums

Don't Cares

- Five and Six-Variable K-Maps
- Multiple Outputs

Don't Cares

Sometimes, a function table may contain entries for which:

- \diamond The input values of the variables will never occur, or
- ♦ The output value of the function is never used
- In this case, the output value of the function is not defined
- The output value of the function is called a don't care
- ✤ A don't care is an X value that appears in the function table
- The X value can be later chosen to be 0 or 1
 - \diamond To minimize the function implementation

Example of a Function with Don't Cares

- \clubsuit Consider a function f defined over BCD inputs
- The function input is a BCD digit from 0 to 9
- The function output is 0 if the BCD input is 0 to 4
- The function output is 1 if the BCD input is 5 to 9
- The function output is X (don't care) if the input is 10 to 15 (not BCD)

*
$$f = \sum_{m} (5, 6, 7, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$$

Minterms Don't Cares

Truth Table

а	b	С	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	Х
1	1	1	1	Х

Minimizing Functions with Don't Cares

Consider: $f = \sum_{m} (5, 6, 7, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$

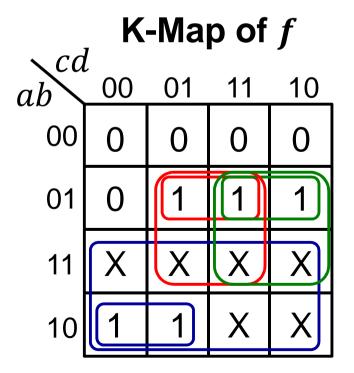
If the don't cares were treated as 0's we get:

f = a'bd + a'bc + ab'c' (9 literals)

If the don't cares were treated as 1's we get:

f = a + bd + bc (5 literals)

The don't care values can be selected to be either 0 or 1, to produce a minimal expression



Simplification Procedure with Don't Cares

- 1. Find all the essential prime implicants
 - ♦ Covering maximum number (power of 2) of 1's and X's (don't cares)
 - ♦ Mark the 1's that make the prime implicants essential
- 2. Add prime implicants to cover the function
 - ♦ Choose a minimal subset of prime implicants that cover all remaining 1's
 - ♦ Make sure to cover all 1's not covered by the essential prime implicants
 - ♦ Minimize the overlap among the additional prime implicants
 - ♦ You need not cover all the don't cares (some can remain uncovered)
- Sometimes, a function has multiple simplified expressions

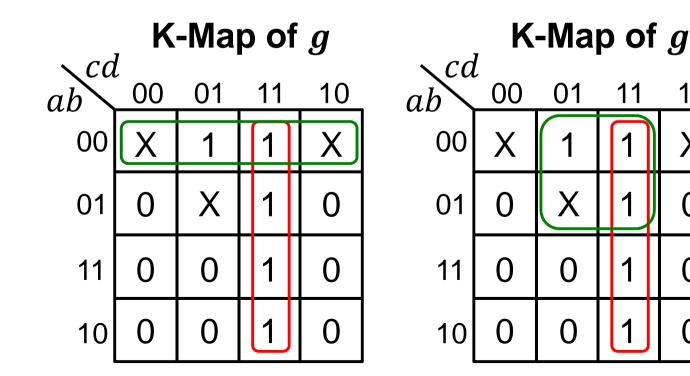
Minimizing Functions with Don't Cares (2)

Simplify: $g = \sum_{m} (1, 3, 7, 11, 15) + \sum_{d} (0, 2, 5)$

Solution 1: q = cd + a'b' (4 literals)

Solution 2: g = cd + a'd (4 literals)

Prime Implicant *cd* is essential



Not all don't cares need be covered

10

Х

 \mathbf{O}

 \mathbf{O}

 \cap

Minimal Product-of-Sums with Don't Cares

Simplify: $g = \sum_{m} (1, 3, 7, 11, 15) + \sum_{d} (0, 2, 5)$

Obtain a product-of-sums minimal expression

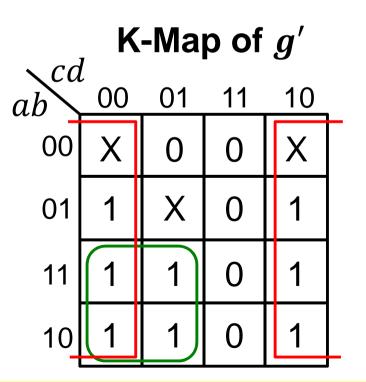
Solution: $g' = \sum_{m} (4, 6, 8, 9, 10, 12, 13, 14) + \sum_{d} (0, 2, 5)$

Minimal g' = d' + ac' (3 literals)

Minimal product-of-sums:

g = d(a' + c) (3 literals)

The minimal sum-of-products expression for g had 4 literals



- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs

Five-Variable Karnaugh Map

- Consists of $2^5 = 32$ squares, numbered 0 to 31
 - Remember the numbering of squares in the K-map
- Can be visualized as two layers of 16 squares each
- ✤ Top layer contains the squares of the first 16 minterms (a = 0)
- ✤ Bottom layer contains the squares of the last 16 minterms (a = 1)

de $a = 0$					de	de $a = 1$				
bc	00	01	11	10	bc	00	01	11	10	
00	m_0	m_1	m_3	<i>m</i> ₂	00	m_{16}	<i>m</i> ₁₇	<i>m</i> ₁₉	m_{18}	
01	m_4	m_5	m_7	m_6	01	m_{20}	m_{21}	<i>m</i> ₂₃	m ₂₂	
11	<i>m</i> ₁₂	<i>m</i> ₁₃	<i>m</i> ₁₅	m_{14}	11	m ₂₈	<i>m</i> ₂₉	m_{31}	m_{30}	
10	m_8	m_9	m_{11}	m_{10}	10	<i>m</i> ₂₄	<i>m</i> ₂₅	<i>m</i> ₂₇	m_{26}	

Each square is adjacent to **5** other squares: **4** in the same layer and **1** in the other layer: m_0 is adjacent to m_{16} m_1 is adjacent to m_{17} m_4 is adjacent to m_{20} ...

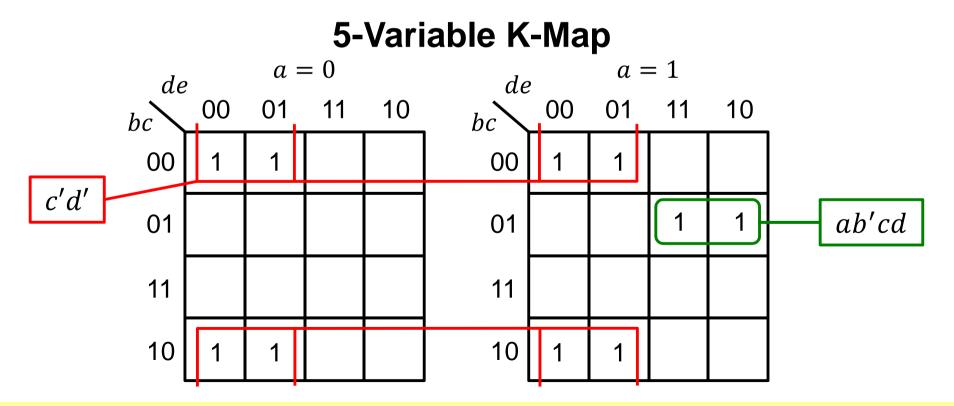
Example of a Five-Variable K-Map

Given: $f(a, b, c, d, e) = \sum (0, 1, 8, 9, 16, 17, 22, 23, 24, 25)$

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for f

Solution: f = c'd' + ab'cd (6 literals)



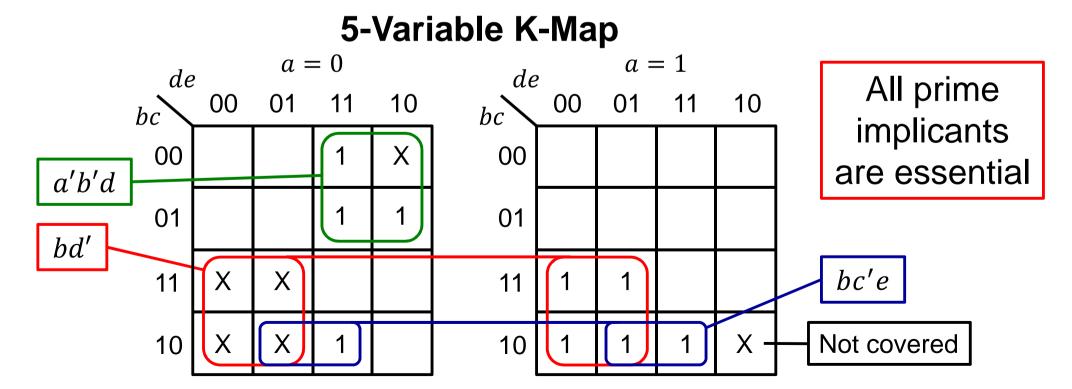
Five-Variable K-Map with Don't Cares

 $g(a, b, c, d, e) = \sum_{m} (3, 6, 7, 11, 24, 25, 27, 28, 29) + \sum_{d} (2, 8, 9, 12, 13, 26)$

Draw the 5-Variable K-Map

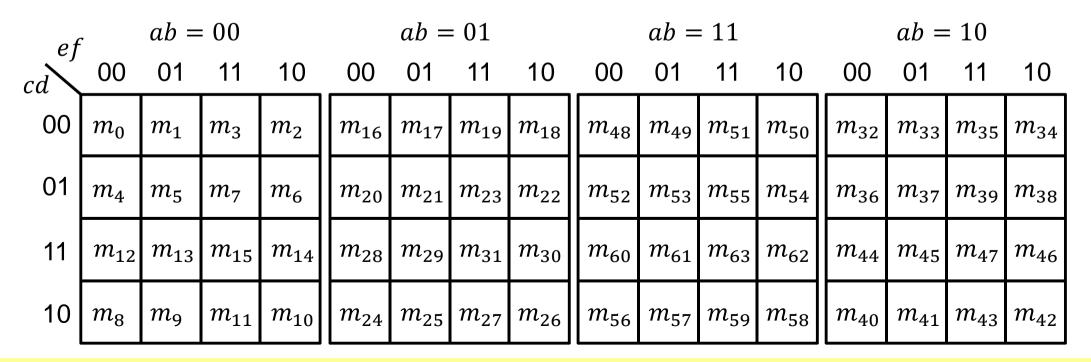
Obtain a minimal Sum-of-Products expression for g

Solution: g = bd' + a'b'd + bc'e (8 literals)



Six-Variable Karnaugh Map

- Consists of $2^6 = 64$ squares, numbered 0 to 63
- Can be visualized as four layers of 16 squares each
 - \diamond Four layers: ab = 00, 01, 11, 10 (Notice that layer 11 comes before 10)
- Each square is adjacent to 6 other squares:
 - \diamond 4 squares in the same layer and 2 squares in the above and below layers

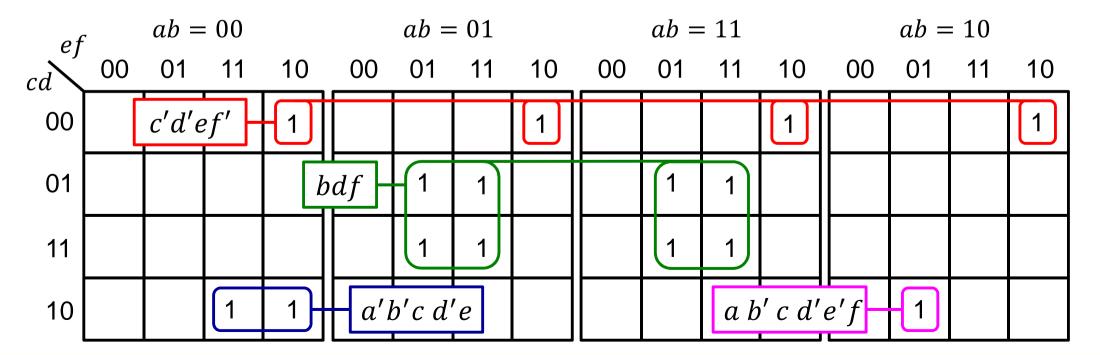


Example of a Six-Variable K-Map

 $h(a, b, c, d, e, f) = \sum (2, 10, 11, 18, 21, 23, 29, 31, 34, 41, 50, 53, 55, 61, 63)$ Draw the 6-Variable K-Map

Obtain a minimal Sum-of-Products expression for *h*

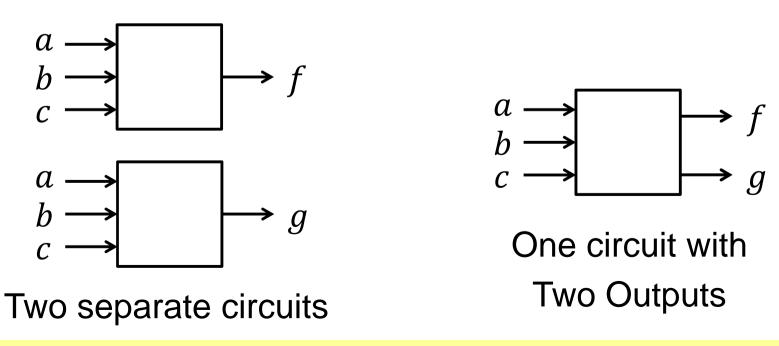
Solution: h = c'd'ef' + b d f + a'b'c d'e + a b' c d'e'f (18 literals)



- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs

Multiple Outputs

- Suppose we have two functions: f(a, b, c) and g(a, b, c)
- Same inputs: a, b, c, but two outputs: f and g
- We can minimize each function separately, or
- \clubsuit Minimize f and g as one circuit with two outputs
- \clubsuit The idea is to share terms (gates) among f and g

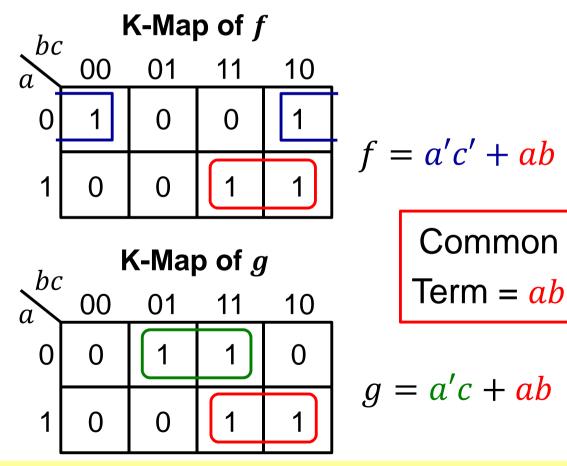


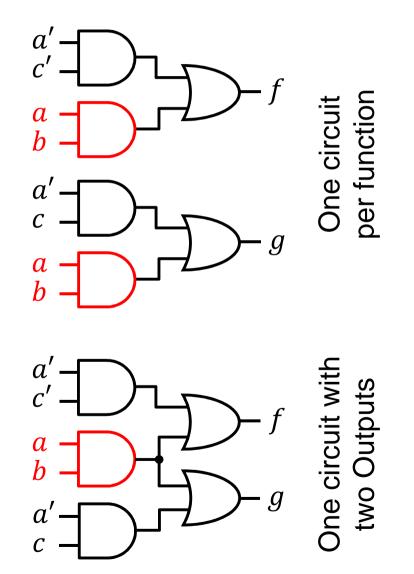
Multiple Outputs: Example 1

Given: $f(a, b, c) = \sum (0, 2, 6, 7)$ and $g(a, b, c) = \sum (1, 3, 6, 7)$

Minimize each function separately

Minimize both functions as one circuit





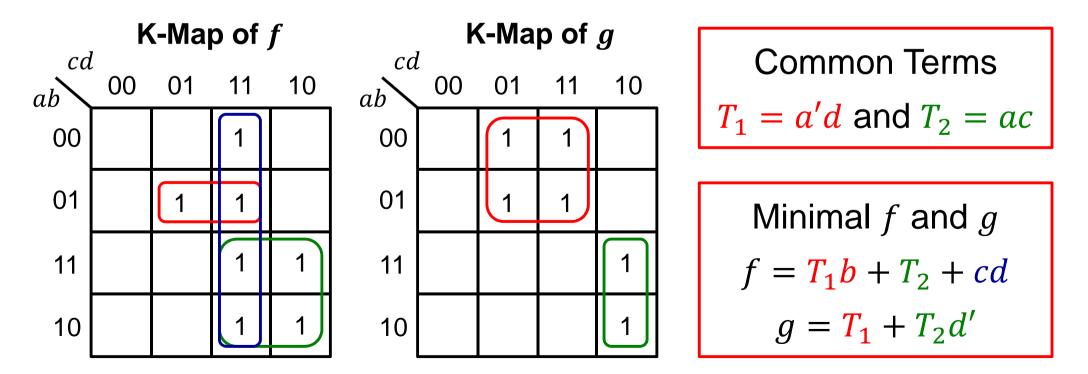
Multiple Outputs: Example 2

 $f(a, b, c, d) = \sum (3, 5, 7, 10, 11, 14, 15), g(a, b, c, d) = \sum (1, 3, 5, 7, 10, 14)$

Draw the K-map and write minimal SOP expressions of f and g

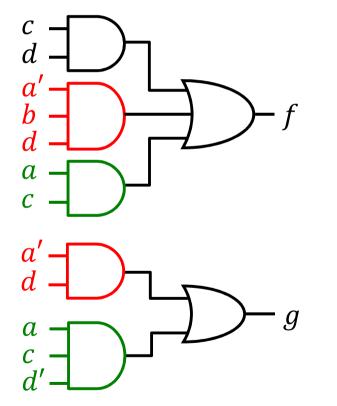
f = a'bd + ac + cd g = a'd + acd'

Extract the common terms of f and g

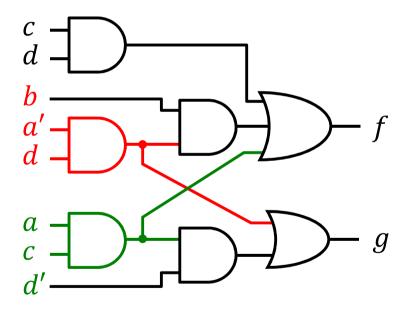


Common Terms -> Shared Gates

Minimal f = a'bd + ac + cd Minimal g = a'd + acd'Let $T_1 = a'd$ and $T_2 = ac$ (shared by f and g) Minimal $f = T_1 b + T_2 + cd$, Minimal $g = T_1 + T_2 d'$



NO Shared Gates



One Circuit Two Shared Gates