
Linux FundamentalsSlide 1

Linux Fundamentals
Institut Pasteur Tunis

21 March 2007

Linux FundamentalsSlide 2

History and Copyright

John M. Ostrowick, jon@cs.wits.ac.za
School of Computer Science,

University of the Witwatersrand
June 2005

Heikki Lehväslaiho, heikki@sanbi.ac.za
SANBI, University of Western Cape

March 2007

This work is licensed under the Creative Commons Attribution-ShareAlike 2.0 South Africa License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/za/

 or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-sa/2.0/za/

Linux FundamentalsSlide 3

Contents

1. Intro & GUIs 4

2. Command line, files, users, jobs 29

3. IO & text 52

4. Archiving, processes, shells 66

5. Installation, system services 87

6. Use management & file systems 101

7. Networking & startup 121

8. Software management 141

Linux FundamentalsSlide 4

Session 1 Overview

Introduction to Linux and Linux history

User interfaces

Getting started: user authentication

Desktop environment

Common GUI applications

Linux file system and home directories

Pathing

File manipulation through the GUI

Linux FundamentalsSlide 5

What is Linux?

A multitasking, multi-user operating system

Informally refers to the operating system as well as the
standard tools and applications distributed with it

Specifically, Linux refers to the kernel which forms the core
of the operating system

The kernel is distributed with indispensable utilities and
applications, such as compilers, editors, command
interpreters, etc.

Most Linux software distributed under the GNU general
public license (GPL)

Linux FundamentalsSlide 6

What are Linux Systems Used
For?

Linux is based on Unix operating systems, traditionally
associated with

heavy computing, stability and backend services

computationally intensive tasks such as visualisation and graphics
rendering

scientific computation and simulations

academic laboratories

Large portion of the Internet is Unix-based

Linux is revolutionising the old legacy of Unix by bringing the
operating system to desktops and everyday users

Linux FundamentalsSlide 7

What are Linux Systems Used For?

Linux systems often used for back end services:

Web servers, database servers, file servers, mail servers, ftp servers,
firewalls, routers, print servers...

Linux is slowly moving onto the desktop:

Desktop, office suites, graphics manipulation

Growing commercial interest in Linux-based computing:

Reliable, secure IT systems

Cost-effective solutions

Support from traditional Unix companies such as Sun, HP, IBM,
Novell

Linux FundamentalsSlide 8

Brief History (I)

Linux began in 1980's as an effort to create a free Unix-like
operating system

The project was called GNU and was run by the Free
Software Foundation (FSF) created by Richard Stallman

Development began with system tools such as editors, a
compiler and hundreds of other utilities

By early 1990's most of the components were written, but
the operating system was missing a kernel

Coincidentally, Linus Torvalds of Helsinki University had been
working on a Unix-based kernel – the first version was
completed in 1994

Linux FundamentalsSlide 9

Brief History (II)

Linus liked the endeavours of the Free Software Foundation
and released his kernel under the GNU GPL

The Linux kernel and GNU tools made a complete, free
operating system: the GNU/Linux operating system

Linux FundamentalsSlide 10

Open Source Licenses

GPL was one of the most important contributions of the FSF

The Open Source definition (http://www.opensource.org) is
based on the GPL

Open Source licenses ensure basic freedoms, including:

The freedom to use the software for any purpose

The freedom to distribute the software to others

The freedom to modify the software

The freedom to distribute the modified software to others (under the
same licensing conditions)

GPL, MPL and BSD licenses are some examples

http://www.opensource.org/

Linux FundamentalsSlide 11

User Interface

Describes the way a system interacts with its users

Text-based or command line interface:

Dates back to pre 1980's

Commands typed using keyboard to run applications

Less user-friendly but extremely flexible, especially for system
administration

Graphical interface:

Point and click to run applications

Interaction with system easier and quicker to learn

Linux provides both and can be set up to boot in either text
mode or graphical mode

Linux FundamentalsSlide 12

Logging In

Since Linux is a multiuser operating system, users must
authenticate themselves before gaining access

Authentication is done with a username and password,
configured by the system administrator

Although visually different, the process of logging in the
same in both text and graphical mode

The combination of username, password and disk space for
personal files is called a user account

Note that Linux is case-sensitive

Linux FundamentalsSlide 13

Switching Between Text and
Graphics

When booting in text mode, the desktop is launched using
the command startx

When booting in graphical mode, a command interpreter can
be launched from the application menu

The command interpreter is also called a terminal or shell

Ctrl-Alt-F1 to F6 will switch from graphical mode into a text-
based terminal

Alt-F7 will switch back to graphical mode if the above step
was performed

Alt-F1 toF6 will switch between several text-based terminals

Linux FundamentalsSlide 14

Changing Passwords

To change your password, type the command passwd at a
shell

You will be prompted for a new password, and a
confirmation - after confirming your current password

Bad passwords are disallowed – passwords should be at
least 6 characters long, contain both letters and digits or
punctuation and must not be based on dictionary words

There is usually a graphical utility for changing passwords
accessible from the application menu (this is desktop-
specific)

Linux FundamentalsSlide 15

The Desktop Environment

A number of different desktops are available for Linux, each
with different look & feel, and functionality

Currently, most popular free desktops are KDE and Gnome

Both are distributed with the most popular Linux
distributions

Graphical applications may be

desktop-specific: e.g. k-tools for KDE

non desktop-specific: e.g. OpenOffice, Mozilla

Linux FundamentalsSlide 16

Desktop Features

Main desktop area:

Application windows

Shortcut icons

Panel:

Application menu launcher, offering convenient access to commonly-
performed tasks
Application shortcuts, should be customised according to user's
needs
Desktop switcher, to switch between virtual desktops, allowing the
user to group applications logically without cluttering
Taskbar, allowing the user to manage currently running applications
System information

Linux FundamentalsSlide 17

Useful Graphical Applications

Word processing / Spreadsheets / Presentations: OpenOffice.org
Writer / Calc / Impress

Drawing: OpenOffice.org Draw

Project management: MrProject

Image manipulation: GIMP

Web browsing: Mozilla firefox

Email: Evolution, Mozilla thunderbird

Text editor: Emacs

PDF reader: Adobe Acrobat reader, xpdf

Accounting: Turbocash, gnucash

IRC client: xchat

Linux FundamentalsSlide 18

KDE-specific Applications

kedit: simple text editor

korganizer: calendaring and event organiser

kghostview: postscript document viewer

kcalc: scientific calculator

kpaint: bitmap drawing program

kmail: graphical email client

amarok: CD player

khelpcenter: online help application

konqueror: file and Web browser

kword: word processor

kspread: spreadsheet application

Linux FundamentalsSlide 19

Gnome-specific Applications

gedit: simple text editor

ggv: postscript document viewer

gcalctool: scientific calculator

nautilus: file and Web browser

eog: graphics viewing program

gnumeric: spreadsheet application

yelp: help browser

gnomemeeting: Voice over IP suite

rhythmbox: CD and music player

gnome-pilot: Palm PDA management

Linux FundamentalsSlide 20

Miscellaneous Utilities

Screen locking: password enabled screen saver

Panel configurator: customise look & feel, location,
behaviour and shortcuts on panel

Online help

Find files utility

Logout function: to quit the desktop, log out, shutdown or
reboot the computer

Control panel (requires root access): to configure hardware,
software and system settings

Linux FundamentalsSlide 21

File System Basics (I)

Files are entities for storing data in a computer system

There are many types of files: various data files and
programs; even devices are represented as files

Filename extensions are a convenience for the user – the
operating system does not derive any meaning from it

Some common extensions include:

.bz2: File zipped with the bzip2 utility

.c: C source code file

.gif/.jpg/.png: Image files (GIF / JPEG / PNG)

.gz: File zipped with the gzip utility

Linux FundamentalsSlide 22

File System Basics (II)

Common extensions (cont.):
.html: Web page

.mp3: MP3 audio file

.pdf: PDF document format

.pl: Perl script

.rpm: RedHat software package

.odt: OpenOffice.org files (writer / calc / impress / draw)

.tar: Archive created with the tar utility

.txt: Plain text file

.zip: File compressed with the zip utility

Note:

Executables

do not have

a standard

extension

Linux FundamentalsSlide 23

Directory Hierarchy

Files are grouped into logical units into collections called
directories (known as folders in other OS's)

Directories may contain subdirectories, resulting in a
hierarchical structure

The top-most directory in this tree is called the root
directory, denoted by a /

Each user has a directory set aside for storing personal files
– this is called his home directory – uniquely identified by
the username e.g /home/dilbert

Users should create new directories in their home directories
to properly organise their files

Linux FundamentalsSlide 24

Example Directory Tree

/

usrbin libetchomedev

bio3bio2bio1 libetclocal bin

sbinbin etc

Linux FundamentalsSlide 25

Pathing

The location of a file in the file system is known as its
pathname

For example:

/home/dilbert/admin/budget.doc

/usr/bin/less

A pathname uniquely defines the path from the root
directory to a file

Note that applications are also files in the file system and
have their own pathnames

Linux FundamentalsSlide 26

Pathing

/

usrbin libetchomedev

bio3bio2bio1 libetclocal bin

sbinbin etc

/home/bio1

/usr/local/etc

 /usr

/usr/lib

Linux FundamentalsSlide 27

File Manipulation with the GUI

konqueror is a KDE utility for visualising and navigating the
file system

The location bar displays the directory whose contents are
being displayed

The main window can be configured to display information
in different ways

Directories and files can be manipulated through menu
options, shortcut icons and context-sensitive menus (i.e. by
right-clicking on an object)

File permission information can be accessed through the
properties option (covered in more detail later)

Linux FundamentalsSlide 28

Session 1 Command Summary

Command Description
startx start the graphical display
passwd change a user's password

Linux FundamentalsSlide 29

Session 2 Overview

Command-line interface (CLI)

File manipulation with the CLI

Viewing file contents; text editors

File system security – users and groups

Shell job control

Linux FundamentalsSlide 30

File Manipulation with the CLI

Understanding paths is important when using the CLI

Absolute pathname: a path that describes the location of
the file from the root directory, e.g.
/home/dilbert/admin/budget.doc

Relative pathname: a path that described the location of
the file from the current directory, e.g. admin/budget.doc

A user is automatically placed in his home directory when
logging in or opening a new terminal or shell

The command pwd prints the current working directory

Linux FundamentalsSlide 31

Changing Directory

The cd command is used to change directory – pathing rules
apply, for example

cd /home/dilbert/admin
cd admin

Certain symbols have special meanings for directories

~ refers to the user's home directory
. (dot) refers to the current directory
.. refers to the parent directory

For example

cd ~/admin
cd ../../bin

Linux FundamentalsSlide 32

Pathing
/

usrbin libetchomedev

bio3bio2bio1 libetclocal bin

sbinbin etc

cd /usr

cd local/etc

cd /usr/local/etc

cd ../

work play

seqs pics

cd ../../../../usr/local/etc

cd /usr/local/etc

in /home/bio1/work/pics

in /usr/local

in /usr

Linux FundamentalsSlide 33

Command Structure and Options
● Linux commands typically follow the structure

command [options] argument1 argument2 ...

● Options are shown in square brackets and are just that
(optional). Options take the following forms:
● Single dash followed by a single letter (e.g. -d; -h)
● Double dash followed by the long name of the option (e.g. --delim; --

help)
● Most commands support the -h and --help options
● Arguments are a mandatory part of the command and must

be supplied

Linux FundamentalsSlide 34

Listing Files

Command: ls [options] [files]

Common options:

-a: shows all files, including hidden files
-l: uses long listing format
-r: produces output in reverse order
-t: sorts output by modification times
-1: lists one file per line

Examples:

ls (short file listing)
ls -al (long listing, including hidden files)
ls -1 (short listing; one file per line)
ls -lrt (long listing; most recently accessed files last)

Linux FundamentalsSlide 35

Creating & Removing
Directories

To create a directory, use mkdir <directory>

mkdir admin

mkdir /home/dilbert/admin

To remove a directory, use rmdir <directory>. Note that
the directory must be empty

rmdir admin

Again the pathing rules apply. The easiest method is to
change directory first so that relative pathing can be used

Linux FundamentalsSlide 36

Copying Files

Command: cp [options] source destination

Common options:

-f: does not prompt before removing

-i: prompts before removing

-r: copies directories recursively

Multiple files can be specified as the source, but only one
destination can be specified (which may be a directory)

Examples:

cp budget.doc oldbudget.doc

cp jan-budget.doc feb-budget.doc admin/

Linux FundamentalsSlide 37

Removing Files

Command: rm [options] files

Common options:

-f: does not prompt before removing

-i: prompts before removing

-r: removes directories recursively

Examples:

rm budget.doc

rm budget.doc oldbudget.doc

rm -r admin/ (to be used with care!)

Linux FundamentalsSlide 38

Renaming and Moving Files

Command: mv [options] source destination

Common options:

-f: does not prompt before moving

-i: prompts before moving

Multiple files can be specified as the source, but only one
destination can be specified

This command is also used to move and rename directories

Examples: mv budget.doc oldbudget.doc; mv budget.doc
../admin; mv admin/ admin2003/

Linux FundamentalsSlide 39

Using Wildcards in Filenames

Wildcards can be used to refer to multiple files

* represents any string of characters
? represents a single character
[] defined sets or ranges

Examples:

ls *.doc
mv *.doc olddocuments/
rm *
ls -l A???.txt
ls [Aa]*png
ls [a-z]*jpg

Linux FundamentalsSlide 40

Helpful CLI Features

Tab completion: command and file names are completed as
far as possible when the tab key is pressed. Double-tab key
press shows available completions

History: pressing the up arrow key scrolls backwards through
the previous commands

Events (!): previous events can be rerun using the ! character
and the first character(s) of the event. The most recent
matching event is chosen. !! runs the most recent command

Control-R allows live history searching

These features are shell-dependent (bash supports all)

Linux FundamentalsSlide 41

Viewing File Contents

cat utility: outputs the contents of a file to the terminal

less utility: similar to cat, but displays one page of output
at a time (improvement of more)

Use spacebar to advance to the next page

Use B to jump back to the previous page

Use Enter key to advance line at a time

Use up and down arrow keys to move a line at a time

search by pressing '/', type the string and press enter (press n for
next)

clear utility: clears the screen

Linux FundamentalsSlide 42

Text Editors

Linux offers a variety of text editors: vi (or vim), emacs,
nedit, pico, jed, kwrite, etc.

vi (and vim – vi-improved) is a command-driven editor that
is found on almost all Unix-based systems

Emacs/xemacs is a GNU editor that offers a large amount of
additional functionality. Its graphical interface and maturity
make it an excellent choice of editor for the novice user.

Linux FundamentalsSlide 43

File System Security

Linux file system security is a simple scheme based on
users and groups

Users belong to one or more groups, set by the system
administrator

Groups allow file access to sets of users to be easily
implemented

Each file is owned by one user and allocated to one group

A new file is created with the user as its owner and the
user's current group as its group

File ownership can be changed with the chown command

Linux FundamentalsSlide 44

Privilege Types

Files and directories may be granted read, write and
execute permissions

Each of these privileges are specified separately for:

the owner

the group

other users, who do not fall into the previous categories

Linux FundamentalsSlide 45

Privilege Semantics

Privileges have different meanings for files and directories

Privileges for files

read permission allows the file to be read, copied, printed, etc
write permission allows the file to be modified, overwritten and
deleted
execute permission allows the file to be executed

Privileges for directories

read permission allows the directory's contents to be listed
write permission allows files to be created and deleted in it
execute permission allows the user to change directory to it

Linux FundamentalsSlide 46

Viewing Permissions via CLI

The ls -l command shows file and directory permissions in
the first column

If the first character is a dash, then it represents a file. If it is a d,
it represents a directory
Characters 2-4 indicate the permissions of the owner (r = read, w
= write, x = execute)
Characters 5-7 indicate the permissions of the group
Characters 8-10 indicate the permissions of other users

Third column displays the owner

Fourth column displays the group

-rw-r--r-- 1 heikki heikki 177932 2007-03-07 13:29 questions.pdf

Linux FundamentalsSlide 47

Modifying Permissions via CLI (I)

Command: chmod [options] mode files

Common options:

-R: applies the changes to directories recursively

Mode specifies:

Entities to which the change should apply (u = user, g = group, o
= other, a = all)

Whether permission should be granted (+) or revoked (-)

Permission types that should be granted or revoked: r, w and/or x

Linux FundamentalsSlide 48

Modifying Permissions via CLI (II)

Examples:

chmod g+rw budget.doc (grants read and write access to group)

chmod o-rx public_html (revokes read and execute permissions to
others)

chmod ug+x MakeBudget (grants execute permission to user and
group)

chmod a+rwx public_html (not a good idea!)

Linux FundamentalsSlide 49

Shell Job Control (I)

Job control refers to the ability of the shell to run processes
in the background

Background processes do not accept input from the shell,
useful for:

processes that do not produce any output

processes that do not interact with the shell

processes that will take a long time to execute

A background process is assigned a job number

Linux FundamentalsSlide 50

Shell Job Control (II)

Start a process in the background by appending an
ampersand to the command, e.g. mozilla &

Suspend an active processes by keying Ctrl-Z

Send a process to the background by typing bg
<jobnumber>

Send a process to the foreground by typing fg
<jobnumber>

View background and suspended processes with the jobs
command

Linux FundamentalsSlide 51

Session 2 Command Summary

Command Description
pwd print working directory
cd change directory
ls list files and directories
mkdir/rmdir make / remove directories
cp copy files and directories
rm remove files
mv move / rename files and directories
cat print files to the terminal
less/more filter output for convenient viewing
clear clear the screen
chown change file and directory owner and group
chmod change file and directory access permissions
fg/bg send processes to foreground / background
jobs list background and suspended processes

Linux FundamentalsSlide 52

Session 3 Overview

IO redirection

Text processing utilities

Getting help on commands

Accessing remote services

Linux FundamentalsSlide 53

IO Redirection

Many Linux commands take input (STDIN) and / or produce
output (STDOUT) on the terminal

IO redirection allows both input and output to be replaced
by files

Output redirection: The > symbol redirects output to a file
rather than the terminal

Input redirection: The < symbol redirects input from a file
rather than the terminal

Examples:

ls > temp
wc -l < temp

Linux FundamentalsSlide 54

IO Redirection: STDERR

Many Linux commands report to a third default location:
standard error, STDERR

tcsh can not redirect STDERR to a file!

STDERR redirection in bash:
– 2> redirects standard error to a file rather than the

terminal
– 2>&1 redirects standard error to the same file as

standard out (equivalent to shorter &>filename)
Examples:

prog > temp 2> log
prog &> outfile.$$

Linux FundamentalsSlide 55

Pipes

Pipes redirect the output of one command to the input of
another

This allows the user to combine commands to create more
complex ones

Examples:

ls -1 | wc -l

cat somefile.txt | grep the

who | grep mary | wc -l

Linux FundamentalsSlide 56

Searching Within Files

Command: grep [options] pattern files

Common options:

-c: prints a count of the matching lines instead of the default output

-i: performs a case-insensitive search

-n: also prints out the line number

-v: inverts match, printing out all non-matching lines

Examples:

grep bash /etc/password (search for “bash” in the given file)

grep -v the novel.txt (search for any line not containing “the”)

Linux FundamentalsSlide 57

Looking at only one end of the file

Command: head [options] file

Command: tail [options] file

-n: where n is number of lines to display

Examples:

head file (display 10 first lines)

head -210 filename | tail (look at line numbers 200-210)

Linux FundamentalsSlide 58

Differences Between Files

Command: diff [options] file1 file2

Common options:

-i : ignores changes in case

-B: ignores changes that just insert or delete blank lines

-q: reports only whether the files differ

Examples:

diff newfile.txt oldfile.txt (list differences between the files)

diff -i newfile.txt oldfile.txt (list differences with case-insensitive
comparison)

Linux FundamentalsSlide 59

Extracting Columns from Files

Command: cut [options] filename

Common options:

-d delim: uses the given delimiter, instead of tab

-c range: outputs only specified characters

-f range: outputs only specified fields

(Range in the form N, N-, N-M or -M, counting from 1)

Examples:

cut -f1-3 mydata.txt (cut fields 1 to 3, use tab as separator)

cut -d”,” -f2 summarydata.csv (cut field 2, use comma as separator)

Linux FundamentalsSlide 60

Merging Files in Columns

Command: paste [options] files

Common options:

-d list: uses delimiters from the list, instead of tabs

-s: pastes one file at a time instead of in parallel

Examples:

paste -d”,” cols1.txt col2.txt
(paste columns from the 2 files with comma as the separator)

Linux FundamentalsSlide 61

Extracting Rows from Files

Command: split [options] filename

Common options:

-b size: outputs size bytes per file

-l size: outputs size lines per file

Examples:

split -l 200 output.db
(split file into 200 line segments)

Linux FundamentalsSlide 62

Sorting

Command to sort: sort [options] file

Common options:

-f: folds lower case characters to upper case
-b: ignores leading blanks
-r: reverses the sort
-n: numeric sorting

Examples:

sort -rf mydictionary
(output lines in case-insensitive reverse sorted order)
sort -n somefile | uniq
(output lines in sorted numeric order)

Linux FundamentalsSlide 63

Removing Duplicates and Counting

Command to remove successive identical lines:
uniq [options] file

Common options:

-c: prefix lines by the number of occurrences

Examples:

sort somefile | uniq
(output lines in sorted order, removing duplicates)
sort somefile | uniq -c | sort -nr
(count occurrence of lines and show most common first)

Linux FundamentalsSlide 64

Passing program output as arguments

White space limited list as arguments to an other program:
xargs [options] command

Common options:

-d: set delimiter

Examples:

cut -d: -f1 /etc/passwd | sort | xargs echo
(compact listing of all logins)
ls -t | head | grep .ppt | xargs mv -t w/talks/
(move the latest ppt files into the w/talks directory)

Linux FundamentalsSlide 65

Getting Help on Commands

Command: man [section] name

Common options:

-k: searches the database for appropriate man page entries

Standard use displays the manual page of the command

The section number may need to be specified for keywords
that have more than one entry in the system

Examples:

man ls

man -k cron

man 5 crontab

Linux FundamentalsSlide 66

Remote Access

Remote access refers to the ability to connect to another
machine on a network and work as though physically
located at that machine

Two applications allow a shell to be run on a remote
machine: telnet (older) and ssh (secure shell)

ssh encrypts the traffic between the two machines, and is
preferred to telnet

scp is a related ssh utility that provides secure file transfer,
and is preferred to ftp

Linux FundamentalsSlide 67

Secure Shell (SSH)

SSH command

ssh [-l username] hostname OR

ssh username@hostname

SCP command

scp [[user1]@host1:]file1 [[user2]@host2:]file2

Arguments provide the source and destination respectively

Examples:

ssh -l root guests.cs.wits.ac.za

scp ../docs/budget.doc guests.cs.wits.ac.za:documents/

scp guests.cs.wits.ac.za:backup.gz .

Linux FundamentalsSlide 68

Session 3 Command Summary

Command Description
print lines matching a pattern
find differences between two files c

cut remove sections in columns from files
paste merge files as columns
split split a file into pieces
sort sort lines of text files
head output the first part of the file
tail output the last part of the file

remove duplicate successive lines from a text file
pass list as arguments to an other program

man
ssh secure shell client (remote login program)

secure copy (remote file copy program)

grep
diff

uniq
xargs

display online manual pages

scp

Linux FundamentalsSlide 69

Session 4 Overview

Compression and archiving utilities

Process management

Shell concepts

Environment variables

Aliases

Scheduling utilities

Linux FundamentalsSlide 70

Compression and Archiving (I)

Compression and archiving are useful for backups and
transferring multiple files across a network (via ftp, http, scp,
email attachments, etc.)

Compression utilities include gzip (.gz extension), bzip2 (.bz2
extension) and zip (.zip extension – MS compatible)

Archiving utilities include tar (.tar extension – most common
Linux format) and zip (.zip extension – MS compatible)

Linux FundamentalsSlide 71

Compression and Archiving (II)

Command: gzip [options] files

Common options:

-d: decompresses instead of compressing
-l: lists compression information
-t: tests the file's integrity

Examples:

gzip somefile.txt (compresses the file and renames to
somefile.txt.gz)
gzip -d tarfile.tar.gz (uncompresses the file and renames to
tarfile.tar)

bzip2 works similarly to gzip, with a .bz2 filename
extension

Linux FundamentalsSlide 72

Compression and Archiving (III)

Command: tar [options] [files]

Common options:

-c: creates a new archive

-f tarfile: uses the specified tar filename (instead of stdin / stdout)

-t: lists the contents of an archive

-v: lists files as they are processed

-x: extracts files from an archive

-z: filters the archive through gzip

-j: filters the archive through bzip2

Linux FundamentalsSlide 73

Compression and Archiving (IV)

Examples:

tar -cvf docbackup.tar *.doc (creates a tar file containing all .doc files)

tar -zxf somearchive.tar.gz (extracts files in the archive compressed
with gzip)

tar -jtf somearchive.tar.bz2 (lists files in the archive compressed with
bzip2)

Linux FundamentalsSlide 74

Compression and Archiving (V)

Command: zip [options] zipfile file1 file2 ...

Common options:

-r: recurses subdirectories

-T: tests the file's integrity

Examples:

zip jan-budget.zip jan-budget.sxc (creates zipped archive containing
the single file jan-budget.sxc – note: original file is not modified)

zip mail-backup.zip mail/* (creates zipped archive containing
everything in the mail directory)

Linux FundamentalsSlide 75

Compression and Archiving (VI)

Command: unzip [options] zipfile

Common options:

-d directory: specifies the directory to which to extract

-l: lists archive contents without extracting

Examples:

unzip -d mail jan-backup.zip (unzips into mail/ directory)

unzip -l jan-backup.zip (lists the contents of the archive)

Linux FundamentalsSlide 76

Process Management

Linux is a multitasking operating systems that allows more
than one process to be run at one time

A running program is called a process; associated with it is a
process ID (PID)

Processes can run in the foreground or background, and can
be combined in interesting ways using IO redirection

Linux FundamentalsSlide 77

Viewing Processes (I)

Command: ps [options]

Common options:

-a: shows all processes attached to a terminal including those
owned by other users

-l: displays additional information

-u: displays additional information about the user

-w: wide format, not truncated at end of line

-x: includes processes not attached to a terminal

-U user: filters according to specified user

Linux FundamentalsSlide 78

Viewing Processes (II)

Examples:

ps (list processes in current terminal of current user)

ps -aux (list all processes)

top offers similar information, but updates itself
continuously

Linux FundamentalsSlide 79

Terminating Processes

Processes no longer responding can be terminated with the
kill command: kill [-signal] PID

This command can be executed at various signal strengths.
Signal strength 9 is the most brutal – only use as a last
resort

Common signals are:

2: Interrupt signal (same effect as Ctrl-C)

9: Emergency kill signal: cannot be ignored by a process

Examples:

kill 1964 (kill process with PID 1964 as gently as possible)

kill -9 1145 (kill process with PID 1145 using maximum force)

Linux FundamentalsSlide 80

Shells (I)

A shell is a command interpreter that executes commands
entered through the command-line interface

Several shells are available, most popular are bash (Bourne
again shell) and tcsh (successor of the original C-shell)

The shell a user uses is set by the system administrator, but
can be changed with the chsh command

Linux FundamentalsSlide 81

Shells (II)

Shells mostly offer the same functionality but may differ
slightly

Different initialisation files (bash runs .bashrc and .bash_profile;
tcsh runs .cshrc)

Tab completion

possible command / filename completion (tab in bash vs Ctrl-D in
tcsh)

tcsh should not be used fro scripting; can not redirect standard error

Linux FundamentalsSlide 82

Environment Variables

They define the user environment and are read from
initialisation files each time a user logs in

To view the value of a variable, type echo $VARNAME
or to see all, type printenv

Some common environment variables:

EDITOR: sets the editor to be used by programs such as mail clients

PATH: specifies directories to be searched for executables

SHELL: the default login shell

To reload any initialisation file without having to logout and
in again, type source <filename>

e.g. source ~/.bashrc

Linux FundamentalsSlide 83

Some Shell Specifics

Using bash:

Global initialisation file is /etc/profile

User-specific initialisation files are .bash_profile and .bashrc

set displays all currently set variables

Syntax to set a variable: export VARNAME="value"

Using tcsh:

Global initialisation file is /etc/csh.cshrc

User-specific initialisation file is .cshrc

setenv displays all currently set variables

Syntax to set a variable: setenv VARNAME="value"

Linux FundamentalsSlide 84

The PATH Variable

Specifies the directories that the shell searches to find a
command or executable

Directories are searched in the order they appear

Any user-directories added to a path should come after the
system directories

If the current directory is added to the path, it should always
be the last entry

Linux FundamentalsSlide 85

Aliases

Aliases provide command-substitution functionality. They
can be used to create new commands or modify the default
behaviour of existing commands

The alias command is used to view and create aliases

called with no arguments, it prints out the current aliases

alias name=value creates a new alias

custom user aliases are stored in .bashrc or .cshrc

Examples:

alias rm='rm -i' (change the behaviour of rm to confirm deletes)

alias ll='ls -lLF | more' (create a new command for friendly file
listings)

Linux FundamentalsSlide 86

bash as programming language

An other way to provide command-substitution functionality
is bash functions

The set command is used to view bash functions

more versatile than aliases; you can combine any commands

name() = { commands } creates a new function in .bashrc

Examples:

psg() { ps -AF | grep "$@" | grep -v grep ; }

killn() { kill `psg "$@" | cut -c9-14` ; }

Bash is a full featured programming language

Advanced Bash-Scripting Guide

Linux FundamentalsSlide 87

Scheduling Utilities

cron

Allows jobs to be scheduled to run at particular times, and is
generally used to execute repeated tasks

It operates by executing tasks when the system time matches a
defined pattern. eg. cron can be told to clean up temporary files
every Monday at 7am

The cron service is started at system startup and then wakes up
every minute to check if a job needs to be started

The cron is modified with the crontab command, crontab -l lists

at

at is similar to cron, but is used to execute once-off tasks, eg. at can
be told to run find the next time 8:15 rolls around by typing 'at
08:15 -c find'

Linux FundamentalsSlide 88

Editing the Cron

Use the crontab -e command to edit the cron(, or kcron)

Cron jobs are specified using an obscure syntax – type man 5
crontab for good documentation

There are 6 columns in the file specifying the following (an *
in the column leaves it unspecified):

1: minute (0-59)

2: hour (0-23)

3: day of month (1-31)

4: month (1-12)

5: day of week (0-7; 0==7==Sunday)

6: the command to be executed

Linux FundamentalsSlide 89

Cron Examples
run 5 minutes after midnight, every day

5 0 * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>&1

run at 10pm on weekdays, annoy Joe

0 22 * * 1-5 mail joe “Where are your kids?”

run at 14:15 on the first of every month

15 14 1 * * $HOME/bin/monthly-reports

Linux FundamentalsSlide 90

Session 4 Command Summary

Command Description
gzip/bzip2 compress and decompress files
tar archiving utility
zip package and compress files
unzip extract compressed files in a zip archive
ps generate process status report
top display top CPU processes
kill terminate a process
echo output text to the terminal
source read and execute commands from a config file
set print or set shell variables
export export variables to the environment
alias print or set aliases
crontab maintain crontab files for individual users
at execute a command at a specified time

Linux FundamentalsSlide 91

Session 5 Overview

Linux installation process

Discussion of various installation options

Demonstration and discussion

Discussion of Linux systems and services

Linux FundamentalsSlide 92

Most popular distributions have a graphical installer that
offers

Step by step instructions

Detailed information screens, help and warnings

Automated detection and configuration of most hardware

Intelligent default options and values

Customisation at various levels of granularity: for first-time to expert
users

Installing the Software

Linux FundamentalsSlide 93

Single versus Dual Booting

Dual booting allows multiple operating systems to be
installed on the same machine

Operating system loader allows the user to choose which operating
system to load at boot time

Useful for home and desktop computers

Requires hard drive space to be partitioned before installation to
create separate disk space

Single booting applies when only one operating system is
installed

Standard choice for server installations

Linux FundamentalsSlide 94

Installation Types

Some installers offer different installation types

Recommended, customised and expert; or

Workstation, server and customised

Inexperienced users should opt for precustomised
installations

Additional software can always be added at a later stage

Installation disks can also be used for system upgrades in
which case existing user data is preserved

Linux FundamentalsSlide 95

Disk Partitioning (I)

Sections the hard drive(s) into different areas

Useful for keeping data logically separate, e.g. keeping
programs away from user data

A special partition called swap is usually created – virtual
memory partition as an extension of RAM

If Linux is installed on a single disk, it is not necessary to
partition the disk further

If keeping the Windows partition, defragment first

Linux FundamentalsSlide 96

Disk Partitioning (II)

Possible additional partitions include

/boot for kernel files

/home for user home directories

/usr for program files

/tmp for temporary system files

/var for variable sized system data, such as log files

Linux FundamentalsSlide 97

Configuring Hardware

Most (possibly all) computer hardware will be automatically
detected by the installer

Still a good idea to know the model of hardware components
in the computer

Uncommon and old hardware is not always supported by
Linux

Note that there is sometimes a lag between the release of
new hardware and Linux support due to reverse engineering
of drivers

Linux FundamentalsSlide 98

Selecting Software

Most installers will allow you to configure the list of software
to be installed, even if a specific installation type has been
chosen

Additional software that you may want includes

alternative desktops

development packages

scientific packages

uncommon software

Linux services (server applications)

Linux FundamentalsSlide 99

Installing Services

Services are applications which offer some functionality to
other machines, called clients

Linux systems are incredibly flexible in terms of server-side
services they offer

They can be set up as print, file, Web, mail, news and many
other types of servers

Linux systems are so reliable that often one machine is used
to offer a number of different services

Note: Security becomes an important consideration when
offering services on a Linux machine – this is beyond the
scope of this course

Linux FundamentalsSlide 100

Internet Services

Web server

Manages incoming HTTP requests and serves web pages to clients
requesting them

Apache is the most popular Linux web server - can be combined with
dynamic Web systems such as CGI (Perl) and PHP

Mail server

A mail server manages incoming mail connections for users on the
local machine

Sendmail and Postfix are popular Linux mail servers

Linux FundamentalsSlide 101

Remote Access Services

ftp server

Facilitates file uploads and downloads from a machine running this
service

Uses the FTP protocol standard, which means that clients are
available for most operating systems

Packaged with inetd (collection of simple Internet services)

ssh daemon

The ssh daemon allows remote users to connect to the machine,
providing them with a shell on the server

Can be used to transfer files, using a “sister” client program called
scp

OpenSSH is the currently used implementation

Linux FundamentalsSlide 102

Database Services

A number of proprietary databases exist for Linux, such as
Oracle, Sybase and Interbase

In addition, open source offerings exist although these are
not as mature

PostgreSQL: the most mature open source database, well-supported

MySQL: fast, lacks some traditional database functionality, later
versions have added them

Linux FundamentalsSlide 103

File Services

Remote Linux file systems can be seamlessly incorporated
into a local file system with the mount utility

Windows file systems are supported through Samba

Windows file systems can be imported to the local system

Linux file systems can be exported (i.e. made to look like) a Windows
drive

Linux FundamentalsSlide 104

Startup Mode

System can be configured to boot in graphical or text mode

Graphical mode is a good option for workstations, where
graphical applications are mostly used

Text mode is a good option for servers

servers do not usually need a graphical interface

reduces system resource needs and increases stability

Note that it is still possible to change between modes after
startup, as well as to change the default startup mode after
installation

Linux FundamentalsSlide 105

User Accounts

Administrative account root always created during
installation

The root account is used to manage all system configuration
such as management of software, services and users

The root password need to be good and kept secret!

At least one other non-administrative account should be
created, but this can also be done after the installation
process

Some distributions () use sudo instead of separate root
account that gives password protected full privileges to the
first user.

Linux FundamentalsSlide 106

Session 6 Overview

User management

Linux file system structure

File system types

Mounting devices

File system utilities

Linux FundamentalsSlide 107

User Accounts and Groups

Linux is a multiuser operating system, where multiple users
can work simultaneously in their own operating environment.
Thus user management is an important concept

Even if the system is only used by a single user it is still
important to create a user account besides the
administrative (root) account

root has unlimited privileges, many of which are not required
for day to day activities

Groups allow the grouping of individual users under a single
name for file access control

Linux FundamentalsSlide 108

Password and Group Files

/etc/passwd stores user account information

/etc/group stores group and membership information

/etc/shadow shadows the password file and stores encrypted
passwords and password expiry information

Password file contains the following entries (one line per
user):

User ID: system assigned number
Group ID: ID of the user's default group
Comment: a descriptive string, usually user's name
Home directory: full path to user's home directory
Default shell

Linux FundamentalsSlide 109

Adding a New User

Command: useradd [options] user

Common options:

-c comment: comment stored in password file, usually user's name

-d directory: home directory name

-s shell: shell for the account

-g initial_group: user's initial login group

Examples:

useradd joe (add user joe with default values)

useradd -s /bin/bash -c 'Joe Smith' joe (add user joe with supplied
values)

Linux FundamentalsSlide 110

Deleting a User

Command: userdel [options] user

Common options:

-r: deletes files in the user's home directory

Example:

userdel joe (delete joe, preserving his home directory)

Linux FundamentalsSlide 111

Adding and Deleting Groups

To add a new group:

groupadd group

To delete an existing group:

groupdel group

Users must be removed from a
primary group before that group
can be deleted

Note:

Use desktop specific

GUI program

for user management

Linux FundamentalsSlide 112

Changing User Passwords

Command:

passwd user

Examples:

passwd (changes password for current user)

passwd joe (changes password for user joe)

Linux FundamentalsSlide 113

File System Hierarchy Overview (I)

The directory tree was designed to be breakable into smaller
parts, each capable of being on its own disk or partition

ease of system administration such as backups and quotas

works well in a networked environment where machines share file
systems

The major parts are root (/), /usr, /var and /home

Root directory (/) contains files for

Booting the system and bringing it to a state where other file
systems can be mounted

File system repair tools

Linux FundamentalsSlide 114

File System Hierarchy Overview (II)

/usr contains commands, programs, libraries, man pages
and other unchanging files needed for operation

Files should not be machine specific – this allows the file system to
be shared across a network

/var contains changing (variable) system files, including
spool directories (print, mail, etc.), logs and temporary files

/home contains users' home directories

Separating these makes backups easier

A large /home may be separated further, e.g. /home/students and
/home/staff

Linux FundamentalsSlide 115

File System Hierarchy Overview (III)

/etc contains system configuration files

/dev contains device files

/proc is a special (virtual) file system created in memory to
provide information about the system

Linux FundamentalsSlide 116

File System Types

Different file system types include:

ext3 – the default Linux file system (journalling file system)

ext2 – the file system used by older Linux versions

iso9660 – the standard cdrom file system

vfat / fat32 – Used by Windows95/98/XP

NTFS – used by Windows NT/XP

smbfs – SMB (Windows-compatible) system for shared drives

Linux supports many file system types including those in the
list above. Linux does not currently support writing to NTFS
filesystems, so NTFS file systems are read-only

Linux FundamentalsSlide 117

Using Storage Devices

Storage devices are referred to by files in the /dev directory.
These files are categorised for easy naming

hd devices refer to hard drives. These are suffixed by a
character identifying the hard drive and a number identifying
the partition on that hard drive. eg. The first partition on the
third hard drive would be hdc1

Other common prefixes are fd for floppy disks and sd for scsi
and usb devices

In order for Linux to access a storage device, its file system
type must be specified, and it must be linked into the
current directory hierarchy. This process is known as
mounting a device

Linux FundamentalsSlide 118

Mount Points

Since Linux does not use the concept of drives, the file
system consists of a single hierarchy, stemming from the
root directory

Additional file systems are mounted onto an existing
directory, creating the illusion of a single file system

The directory in the original file system that the new file
system is mounted on is called the mount point

Linux FundamentalsSlide 119

Mounting Devices (I)

The mount command is used to mount and unmount file
systems

mount accepts as parameters the device to be mounted and
the directory to which it must be linked – the mount point

The file system type is defined using the -t <filesystem>
option

The format used is

mount -t <file system type> <device> <mount point>

Linux FundamentalsSlide 120

Mounting Devices (II)

Examples:
– In order to mount the first partition on the first hard drive with an

ext2 file system onto directory /drive2 we would type

 mount -t ext2 /dev/hda1 /drive2

– To mount a USB memory stick:

 mount /dev/sda1 /mnt/flash

Be sure to
create the

mount point
 first!

Linux FundamentalsSlide 121

Determining Disk and Memory Usage

The df command is used to determine how much free space
is available on the mounted storage devices

The du command shows how much storage space is being
used by the current directory and all its subdirectories

Common options for both:

-h: prints in human-readable format

The free command displays usage information about physical
memory and swap space

Linux FundamentalsSlide 122

Locating files

Command: find path -name pattern

Examples:

find . -name "*.txt"
(find .txt files starting from the current directory)

find / -name "*.rpm"
(find rpm files starting from the root directory)

Command: locate pattern [uses the (s)locate database,
which needs to be updated regularly]

Example:

locate txt (find any file whose name contains the string “txt”)

Linux FundamentalsSlide 123

Querying File Types

Command: file [options] file

Common options:

-z: filters the file through gzip

Examples:

file main.c

file index.html

file somearchive.tar.gz

Linux FundamentalsSlide 124

Session 6 Command Summary

Command Description
useradd create a new user account
userdel delete a user account
groupadd create a new group
groupdel delete a group
mount mount a file system
df summarise file system disk space usage
du calculate file disk space usage
free display information about free and used memory
find search for files in the file system
locate query the locate database for files
file determine a file's type

Linux FundamentalsSlide 125

Session 7 Overview

Networking basics

Configuring network devices

Routing basics

Host name resolution

Startup sequence

Service scripts

Linux FundamentalsSlide 126

Networking Basics

Each machine on a network is assigned

A host name, made up of a machine name and a domain name e.g.
neptune.cs.wits.ac.za

An IP address. In the case of a server the IP address must be public
and unique e.g. neptune.cs.wits.ac.za's IP address is 146.141.27.226

A network address, which specifies which other IP addresses form
part of the same network

An IP address is assigned to a physical interface such as an
ethernet port

Linux FundamentalsSlide 127

Host Names

Host names provide a means to address a specific machine

This is necessary to locate dedicated services, e.g. web sites, ftp
servers (www.google.com; ftp.is.co.za)

Host names are easier to remember than IP addresses and allow IP
addresses of hosts to be easily changed

Host names are resolved into IP addresses through

Domain Name System (DNS): a distributed registry of host name to
IP address mappings and reverse mappings

Local /etc/hosts file

Linux FundamentalsSlide 128

IP Addresses

Every machine on a network must be assigned an IP
address

IP addresses can be

static: fixed to a particular machine

dynamic: belong to a pool and bound to a machine at boot time
(current implementation called DHCP – Dynamic Host Configuration
Protocol)

Servers have static IP addresses

Clients (workstations) may have either – dynamic addresses
are arguably easier to administer

Linux FundamentalsSlide 129

Configuring Network Interfaces (I)

Command: ifconfig interface [parameters]

Frequently used parameters:

address: the interface's IP address

netmask mask: the associated subnet mask

up: actives the interface (implied if address is given)

down: deactivates the interface

Used without parameters, the current configuration is
displayed

Linux FundamentalsSlide 130

Configuring Network Interfaces (II)

Examples:

ifconfig eth0
displays configuration for default ethernet card

ifconfig eth0 146.141.27.155
sets the IP address and enables the interface

ifconfig eth0 146.141.27.155 netmask 255.255.255.0
sets the IP address and the network mask

ifconfig eth0 down
disables the ethernet interface

Linux FundamentalsSlide 131

Routing (I)

Routers use routing tables to route network traffic from one
network to another (and throughout the Internet)

Routers may be dedicated equipment, but Linux servers can
also be set up as routers – this is beyond the scope of this
course

All networked machines need to be configured to determine
where to send network traffic not destined for the local
network – this is done by configuring a default route /
gateway

Linux FundamentalsSlide 132

Routing (II)

Command: route [add | del] options

route with no options displays the routing table

route add adds a new route to the routing table

To configure a default route, use the following command:
route add default gw <IP address>

For example, route add default gw 146.141.27.1

Linux FundamentalsSlide 133

Host Name Resolution (I)

Most machines are configured to resolve host names through
the DNS

For hosts that are not in the DNS (such as small networks
with no DNS server) a local file (/etc/hosts) can be used to
store host information as well

The file /etc/host.conf configures the order in which these 2
methods are applied to resolve host names. The standard
configuration is order hosts, bind which first looks at the
local file before querying the DNS

BIND (Berkeley Internet Name Domain) is the most common
name server implementation

Linux FundamentalsSlide 134

Host Name Resolution (II)

Information about name servers in the DNS to be queried is
specified in /etc/resolv.conf

A sample file is

search cs.wits.ac.za

search ms.wits.ac.za

nameserver 146.141.27.9 dns

nameserver 146.141.15.210 caesar.wits.ac.za

At least one name server should be specified

The search option allow short names relative to the domain
name to be used

Linux FundamentalsSlide 135

Host Name Resolution (III)

The dig and nslookup commands are used to query name
servers

For example
 nslookup neptune.cs.wits.ac.za
produces

 Name: neptune.cs.wits.ac.za

 Address: 146.141.27.226

Both commands have a variety of different options – consult
the man pages for information

Linux FundamentalsSlide 136

Network Troubleshooting

The ping command sends ICMP echo request packets to the
specified host and reports on how long it takes to receive a
corresponding ICMP echo reply, e.g. ping
neptune.cs.wits.ac.za

The traceroute command attempts to display the route
over which packets must travel to reach the destination

Both commands do not work as effectively as they once did
since firewalls nowadays often block out ICMP traffic (to
prevent denial of service attacks)

The ping command is useful for testing whether a newly
connected machine can see others on the same network
(e.g. by pinging the default gateway)

Linux FundamentalsSlide 137

Startup Sequence

The first program that runs when the computer boots is
responsible for loading the operating system and is known as
the bootloader

Most Linux systems currently use the grub bootloader. lilo
(linux loader) was its predecessor

grub loads the kernel of the Linux operating system. It can
be configured by editing the /etc/grub.conf file

The kernel then starts the init program which is responsible
for starting all services and initial programs

Linux FundamentalsSlide 138

Init and Runlevels

The init process executes all the scripts that should run when
Linux starts. The list of programs that should be run is
customisable

The init configuration is stored in /etc/inittab

/etc/inittab file defines different modes (called runlevels) that
the operating system can run in

Associated with each runlevel is a set of programs which init
should run at startup

The default runlevel is set by the system administrator (and
can be changed by editing the initdefault line) in /etc/inittab

Linux FundamentalsSlide 139

Runlevels

Possible runlevels are:

0: system halt (do not set initdefault to this)

1: single-user mode

2: multi-user mode, without remote network (incl. NFS)

3: full multi-user mode

4: unused

5: full multi-user mode with network and X display
manager

6: system reboot (do not set initdefault to this)

Linux FundamentalsSlide 140

Startup Scripts

Startup scripts are located in the /etc/init.d/ directory (for
Suse and Ubuntu – this differs from one distribution to
another)

Symbolic links in directories corresponding to the runlevel
indicate which services should be started at each runlevel

/etc/init.d/rc3.d/ for runlevel 3

/etc/init.d/rc5.d/ for runlevel 5

Links prefixed by S are run at startup (in increasing order)

Links prefixed by K are run at shutdown (in decreasing
order)

Linux FundamentalsSlide 141

Starting and Stopping Services

Linux services can be started and stopped manually by
running the corresponding script with the arguments start or
stop. e.g:

/etc/init.d/httpd stop
/etc/init.d/network start

Startup scripts also optionally support the following options:

restart: stops (if running) then starts the service
reload: reloads the configuration without restarting the service
force-reload: reloads configuration if possible, otherwise restarts
status: shows current status of service

Information about service processes is also always available
through the ps command

Linux FundamentalsSlide 142

Service-Related Commands (I)

chkconfig is a convenient method of modifying the services
automatically started up at each runlevel. It changes the
symbolic links in /etc/init.d/rc*.d according to the specified
configuration. It supports the following options :

--list : lists known services and their current configurations

--add <name>: adds a service for configuration

--del <name>: removes a service

--level <number> <name> <on/off/reset>: configures a particular
service on a specific runlevel. Services can be enabled or disabled at
a particular runlevel using on or off. reset changes the configuration
of the service to that specified in its initial configuration file

Linux FundamentalsSlide 143

Service-Related Commands (II)

netstat provides a variety of network-related information

When run with no options, netstat displays all open sockets,
i.e. shows all active connections on the machine, including
local connections between processes

Common options include:

--tcp : displays only tcp sockets

--udp : displays only udp sockets

-l : displays only listening sockets

-r : prints out the routing table

-p : shows the programs currently using particular sockets

Linux FundamentalsSlide 144

Session 7 Command Summary

Command Description
ifconfig configure and display network interfaces
route show and configure the routing table
dig DNS lookup utility
nslookup interactive DNS query tool
ping send ICMP echo requests to network hosts
chkconfig update and query runlevel information for services
netstat report network connections, routing tables, etc.

Linux FundamentalsSlide 145

Session 8 Overview

Software management

Packaging and dependencies

Common package formats

Compiling from source

Managing software with RPMS

Linux distributions

Acquiring Linux and open source software

Support and documentation

Linux FundamentalsSlide 146

Why Software Management?

Software installation and upgrades from the current
distribution

Installing previously uninstalled software

New versions of software continuously released

Distribution upgrades

New software – Linux distributions are bundled with a large
amount of software, but

not all software can be distributed due to the vast amount of
available software

they do not contain proprietary software, which you may acquire and
need to install

do not generally contain niche application software

Linux FundamentalsSlide 147

Packaging Software – Tarballs

Software must be packaged in a convenient way to distribute
or download

The oldest and most generic format is the tarball (.tar.gz or
.tar.bz2)

a tarred, compressed archive containing the program source or
binaries (binaries are limited to a specific platform)

source tarballs are distribution (and sometimes platform)
independent

but, usually the hardest to install (due to dependency issues and
non-standard infrastructure)

Niche software is unfortunately often only available in source
tarballs

Linux FundamentalsSlide 148

Packaging Software –
Packages

Packages are a distribution-specific method for distributing
software

Are associated with a software (package) management system

Can have embedded pre- and post- installation scripts

Usually associated with binary installations (no need to compile)

RedHat package format (RPM) is the most widely supported

Package managers

Manage software dependencies between packages

Simplify software management (installing, upgrading, removing)

Are tied to a specific distribution of Linux (unfortunately)

Linux FundamentalsSlide 149

Software Dependencies (I)

Scenario 1

You install a custom package that installs with additional shared
software which was not obtained from your distributor, which the
custom software is built against

The distribution's versions of the shared software breaks when the
new software version gets installed and the distributor's version get
uninstalled

Scenario 2

You install a custom package which relies on shared software

You then install software from the distribution which has a different
version of the shared software as a dependency

Your custom package breaks without your knowing why

If you reinstall the custom package, it overwrites the shared software
from the distribution and a vicious cycle occurs

Linux FundamentalsSlide 150

Software Dependencies (II)

The moral of the story:

Always try to obtain software provided by the distribution

If this is not possible, try to obtain the software in the package
format supported by the specific release of your distribution.
(Another option – expert option – is to get the source package and
create the package yourself)

If the only option is to compile from tarballs, either

Install into your own ~/bin directory and add this directory to your
path, or

Install into /usr/local/ (not into /usr)

Linux FundamentalsSlide 151

Compiling from Source (I)

Look out for the following files at the top of the source code
tree:

README

should always be read first

contains information about software functionality, supported
operating systems, dependencies on other software, installation
instructions, authors and license of the software

INSTALL

information about how to install the software

may contain information for different installation and architecture
types

Linux FundamentalsSlide 152

Compiling From Source (II)

TODO

information about functionality to be added in the future

configure

script that checks the configuration and settings of the machine

creates a Makefile used to compile the software

incredibly useful but not always available

Makefile

specifies the procedure for compiling the software

quite technical but commonly used software does not require user
interaction

Linux FundamentalsSlide 153

Compiling From Source (III)

Vanilla installation procedure looks as follows:

./configure

make

sudo make install

Linux FundamentalsSlide 154

Common Package Formats

RPMs

Supported by many distributions and probably the most common
package type

Note that distributions often package their own RPMs so RPMs are not
necessarily compatible across RPM-supporting distributions

.DEBs

Debian-style package management with a versatile set of software
management and reporting tools (text and graphical)

Linux FundamentalsSlide 155

RPM Package Names
Package names have strict naming rules, which contain the
following information from left to right:

Name: package name

Version & Release number

Architecture: Intel architecture is i386

.rpm extension

Examples:

gzip-1.3.3-9.i386.rpm

mozilla-1.2.1-26.i386.rpm

rpm command is used to install, remove, upgrade, query and
verify packages

Linux FundamentalsSlide 156

Installing and Upgrading RPMs

Command:

rpm -i packagefile

rpm -U packagefile

Common options:

-h: uses hash marks to indicate progress

--test: verifies the installation without installing

-v: sets verbose mode

--nodeps: skips dependency checking (not recommended)

Examples:

rpm -i mozilla-1.0.1-24.i386.rpm

rpm -Uvh gzip-1.3.3-5.i386.rpm

Linux FundamentalsSlide 157

Uninstalling RPMs

Command:

rpm -e package

Common options:

--nodeps: skips dependency checking (not recommended)

--test: verifies the uninstall without uninstalling

Example:

rpm -e mozilla-1.0.1-24

Linux FundamentalsSlide 158

Querying Packages (I)

Command: rpm -q

Common options:

-a: displays a list of all packages installed

-f file: displays which package contains the specified file

-i package: displays information about an installed package

-c package: lists configuration files in an installed package

-d package: lists documentation files in an installed package

-l package: lists all files in an installed package

-R package: lists packages on which this package depends

-p packagefile: used in conjunction with other options, refers to
(uninstalled) package file rather than installed package

Linux FundamentalsSlide 159

Querying Packages (II)

Examples:

rpm -qa (generates a list of all packages installed)

rpm -qi mozilla-1.0.1-24 (displays information about the installed
mozilla package)

rpm -qpi mozilla-1.0.1-24.i386.rpm (displays information about the
uninstalled package file mozilla-1.0.1-24.i386.rpm)

rpm -ql mozilla-1.0.1-24 (lists all files in the installed mozilla
package)

Linux FundamentalsSlide 160

YaST

YaST (Yet another Setup Tool) is Suse's system and software
configuration management tool (a front-end for configuring
just about everything in the system)

YaST's software manager is a front-end to the underlying RPM
framework

Manages multiple dependencies concurrently

Allows for online updates from official Suse sources

Keeps track of installed and available software from CD and online
sources

Provides a convenient mechanism for keeping uptodate with security
patches and software updates

Linux FundamentalsSlide 161

Acquiring Open Source Software (I)

The safest place to acquire new software is from the
distributor of your distribution (also remember that software
you require may be on the original CDs)

Sourceforge (sourceforge.net) is the largest repository of
open source projects, but requires critical evaluation

Open source indexes and search engines include

Freshmeat – www.freshmeat.net

Tuxfinder – www.tuxfinder.com

RPM search engine – www.rpmfind.net

Bioinformatics.org (www.bioinformatics.org) is a repository
for bioinformatics-specific software

Linux FundamentalsSlide 162

Acquiring Open Source Software (II)

Some project specific sites:

Apache Web server: www.apache.org

OpenOffice office suite: www.openoffice.org

PostgreSQL database: www.postgresql.org

MySQL database: www.mysql.com

GNU project: www.gnu.org

Mozilla Web browser suite: www.mozilla.org

GNOME desktop project: www.gnome.org

KDE desktop project: www.kde.org

Linux FundamentalsSlide 163

Linux Distributions

Many disparate efforts to package software needed for a
complete Linux system has resulted in many different
distributions

Caldera OpenLinux: http://www.calderasystems.com/

Debian GNU/Linux: http://www.debian.org/

Impi: http://www.impi.org.za/

Knoppix: http://www.knoppix.net/

Mandrake: http://www.linux-mandrake.com/

RedHat / Fedora: http://www.redhat.com/ & http://fedora.redhat.com/

Slackware: http://www.slackware.com/

Suse: http://www.suse.com/

Ubuntu: http://www.ubuntulinux.org/

Linux FundamentalsSlide 164

Acquiring Linux

Open Source Linux distributions are available from a
number of different sources:

Almost always available on the Internet (and may have local
mirrors)

Available through local distributors

From a friend with a CD burner...

Through libraries, community centres etc.

Note that some “enterprise” versions contain proprietary
software

Linux FundamentalsSlide 165

Open Source Software Support

There is a misconception of a lack of open source and Linux
support

In fact there are two routes for support: standard, paid-for
support and the traditional community support

Community support can be found through online
documentation, mailing lists, discussion forums, IRC
channels, user groups

Linux documentation is also improving

Ad-hoc documentation on the Web

Distribution-specific manuals and online documentation

Books (stores and online – O'Reilly publishes many for free)

Linux FundamentalsSlide 166

Selected Online Resources

www.linux.org: general source of information pertaining to
Linux

www.tldp.org: (The Linux Documentation Project) official
repository of technical documentation

www.slashdot.org: popular news and discussion forum site

www.tectonic.co.za: local news site featuring latest open
source developments

Distribution-specific sites: e.g. portal.suse.com provides
Suse documentation

www.google.com as always...

