
Annotated Source Code

The line numbers referenced throughout this document refer to the section
entitled The Scooby Source Code, which starts on page 24.

It is recommended that this section be read sequentially, from start to fin-
ish. A number of techniques within the source code are repeated at various
places within the code (and within the various parts of the system). When
first encountered, each technique is described in detail. When subsequently
encountered, the technique is referred to in a manner that assumes the reader
is familiar with the detailed description1.

1.1 The Key Server

The Key Server provides the facility with the ability to store and subse-
quently retrieve RSA Public Key values for the various entities within the
environment: mobile agents and Locations.

The standard “magic” first line appears at 0001, and the programs version
number is defined on line 0010.

Lines 0011-0018 import the Key Server’s required modules, and lines 0019-
0037 define a collection of constant values that are used throughout the
source code.

A global variable2, called %allowed connections is defined as initially empty
on line 0040. The %allowed connections variable is a hash.

1The alternative would have been to repeat technical descriptions where appropriate,
and unnecessarily expand the size of this section of the document. Too many trees would
have died if this alternative had been followed.

2Within Perl, variables designated as “our” variables are lexically scoped to the file
that contains them. This isn’t really “global” as far as most other programming languages
are concerned, but this is what “global” means in Perl.

1

A small anonymous subroutine is assigned to the CHLD signal handler on
line 0042. This signal handler will be executed every time a child process
signals its termination. This allows the parent process to successfully deal
with “zombies”3.

1.1.1 The Key Server’s main code

The main code to the Key Server starts by processing the configuration file.
Lines 0514-0523 open the configuration file (which is called .keyserverrc
by default) and read it’s contents into the %allowed connections hash.
Lines 0524-0528 displays status messages on screen (assuming the value
of ENABLED PRINTS is set to true, which it is by default). These messages
indicate the list of hosts that the Key Server is willing to accept connections
from.

Lines 0534-0544 establishes a connection with the MySQL database service
which holds the SCOOBY.publics database table, aborting the Key Server
if the connection cannot be established (on line 0543).

On lines 0548-0551 an SQL query is created to check the database table
for an existing RSA Public Key for the Key Server. After forwarding the
query to the database server on line 0552, lines 0553-0559 process the results
returned from the database server, setting the $pkplus in db scalar to true
if the RSA public key was found, false otherwise.

If not found, lines 0562-0591 generate an RSA Private/Public Key pairing
(lines 0568-0575), storing the RSA Private/Public Keys in disk-files (line
0573). The RSA Public Key is read from its associated disk-file (lines 0580-
0583), then used to build another SQL query to insert the the Key Server’s
RSA Public Key into the database table (lines 0584-0590).

If an RSA Public Key was found in the database table, a status message
is displayed to this effect (lines 0594-0595) before closing the connection to
the database server on line 0597.

The main code then forks a subprocess on line 0599. If this is unsuccessful,
the Key Server aborts (line 0603). If successful, the child process starts the
Web-based Monitoring Service on line 0608 (note the statement modifier on
the call to the start web service, which only starts the web-service if the
ENABLED LOGGING constant is defined).

The parent process (starting on line 0615) invokes the fork system call
3Zombie: a child process that has ended but has yet to have its process identifier

removed from the operating systems process table.

2

again, creating another child process. Again, failure to do this results in
the Key Server aborting on line 0619. Assuming success, the child process
starts the Registration Service on line 0625, while the Responding Service
is started by the parent process on line 0631.

start web service, together with the start registration service and
start responding service invocations are never returned from. Servers
are permanent, in that they run forever (or until “killed” by the operating
system).

Lines 0637-0709 are the Key Server’s on-line documentation, which is printed
in the appendix entitled The On-line Documentation.

1.1.2 logger subroutine

Starting on line number: 0046.

This subroutine opens the logfile in append-mode (line 0057), then writes
a single line to the file (line 0059). The line contains a time-stamp and the
values of any parameters passed to this subroutine as arguments. The logfile
is then closed (line 0060).

This subroutine is called by nearly every other subroutine in this program
(including the main program code). It provides a convenient mechanism for
logging the state of the Key Server.

1.1.3 build index dot html subroutine

Starting on line number: 0062.

This subroutine dynamically creates a file called “index.html” for use with
the Web-based Monitoring Service. Any existing file is overwritten (line
0068), then a HERE document is used to write the new contents of the
disk-file (line 0070-0099), before closing the disk-file on line 0100.

Note the inclusion of the name of the system running the Key Server within
the generated HTML (line 0078), in addition to the current system time
(line 0079). The content of the generated HTML page is taken from the Key
Server’s logfile, which is processed sequentially (lines 0085-0091).

3

1.1.4 build clearlog dot html subroutine

Starting on line number: 0102.

Similar to build index dot html, above, this code generates a HTML page
for the Web-based Monitoring Service (called clearlog.html). A single ar-
gument is used to initialize a scalar (called $backup log) on line 0108, before
embedding the value in the HTML page on line 0118. Any existing HTML
file of the same name is overwritten by this subroutine (line 0109).

1.1.5 start web service subroutine

Starting on line number: 0128.

This subroutine implements a simple HTTP server4 on a predefined protocol
port number (line 0135). This code loops forever, waiting for a connection
from a HTTP client5 (line 0139). The HTTP server is based on the skeleton
server provided by the HTTP::Daemon module.

When a connection arrives, the HTTP request is examined (line 0141).
If the request method is “GET” (line 0144), the code checks to see if the
request is for “/” or “/index.html” (line 0148) and, if it is, invokes the
build index dot html subroutine to generated the requested HTML page
before returning it to the HTTP client (lines 0151-0152).

If the request is for “/clearlog.html” (line 0154), the code backs up the
existing logfile to an appropriately named file (lines 0157-0159), before re-
moving the logfile from the file-system (line 0160).

The build clearlog dot html subroutine is then invoked to generate the
requested HTTP resource, before returning it to the HTTP client (lines 0163
and 0163).

Any other HTTP request results in an appropriate error message returned
to the HTTP client (lines 0167 and 0172).

1.1.6 start registration service subroutine

Starting on line number: 0182.

The Registration Service begins by creating a socket-object to listen on (lines
4Commonly referred to as a “web server”.
5Commonly referred to as a “web browser”.

4

0199-0204), aborting on failure (line 0208). This subroutine then waits for
connections from clients on line 0216.

When a connection arrives, line 0217 checks to see if the connection is orig-
inating from an allowed host. If it is NOT allowed, three things happen:

1. The unauthorized attempted connection is logged to the logfile (line
0219-0221).

2. A warning message prints on screen (lines 0222-0224), if appropriate
(see the ENABLED PRINTS constant).

3. A “go away” message is sent to the client (line 0225).

The connection to the client is then closed (line 0226), before starting an-
other iteration (line 0227).

If the connection is allowed, a subprocess is created to service the client
(line 0231). The subprocess (the child) registers an RSA Public Key with
the database server on behalf of the client (lines 0233-0319). The IP address
of the client (the peer) is determined on line 0238, then the protocol port
number is received from the client connection (line 0240). The protocol port
number is error-checked to ensure it conforms to an appropriate format
(between 1 and 5 digits) on lines 0242 and 0243. If the format is NOT correct,
the log is updated with the details (line 0246), a status message is printed
(line 0247) and a “go away” message is sent to the client (line 0248). The
connection to the client is then closed (line 0250), before starting another
iteration (line 0253).

If the protocol port number is acceptable, a check is performed to ensure the
client is not attempting to update the RSA Public Key of the Key Server
(line 0255). If this client is attempting such an act of skulduggery, the usual
fate (as describe above) awaits the client (lines 0257-0263).

Assuming an appropriate IP address and protocol port number, the code
then receives (what it hopes is) an RSA Public Key from the client (line
0269). A connection to the database server is established (lines 0271-282),
and an SQL SELECT query is created to determine if the database table
already contains an entry for the IP address/protocol port number pairing
(lines 0284-0287). The query is executed on line 0288, then the results are
processed to determine whether the query returned results or not (lines
0293-0294). If an entry already exists, an SQL UPDATE query is created to
perform the update (lines 0298-0303) or (if an entry does not exist) an SQL
INSERT query is created to perform the insertion (lines 0308-0312). The
query (which ever one is created) is executed on line 0314, then the client

5

exits on line 0318. This results in the generation of a CHLD signal, which is
caught by the parent process and processed (removing any possibility of the
child entering into a zombied state).

The Registration Service then iterates, ready for the next client connection.

1.1.7 start responder service subroutine

Starting on line number: 0323.

The code in this subroutine is structured similarly to that of the previ-
ous subroutine, start registration service. A number of techniques are
common to both subroutines.

The Responding Service starts by creating a socket-object to communicate
on (lines 0347-0352), aborting if this is NOT possible (line 0356).

An infinite loop is then entered into (line 0362), as servers are permanent.
A connection is then waited for (line 0364). When one arrives, it is checked
to see if it is allowed (line 0365), with appropriate action taken if the client
is NOT authorized to connect (lines 0367-0373).

A subprocess is then created to service the client (line 0378), with the child
process code on lines 0382 to 0502.

An IP address is received from the client connection (line 0385), followed
by a protocol port number (line 0387). Lines 0389-0401 check to see if the
IP address is appropriately formatted (line 0389) and takes the appropriate
action if it is NOT formatted correctly (lines 0393-0400). Lines 0403-0415
check the format of the received protocol port number (line 0403), then
takes the appropriate action if the protocol port number is NOT formatted
correctly (lines 0407-0414).

Assuming a correctly formed IP address and protocol port number have
been received, a connection is established with the MySQL database server
(lines 0416-0421), aborting if the connection cannot be made (line 0425).

An SQL SELECT query is then formed (then executed) to extract the RSA
Public Key associated with the received IP address and protocol port num-
ber from the SCOOBY.publics database table (lines 0430-0434). The re-
sponse is then processed, starting on line 0439.

If the RSA Public Key for the Key Server was requested (line 0444), the
string “SELFSIG”, followed by the “\n--end-sig--\n” delimiter, defined by
the SIGNATURE DELIMITER constant (line 0453), followed by the RSA Public

6

Key for the Key Server (line 0456) is sent to the client.

If the request is for the RSA Public Key for some other entity, the RSA
Public Key is signed (lines 0472-0476) by the Key Server’s RSA Public Key,
which was previously read-in from the Key Server’s RSA Public Key disk-
file (lines 0465-0469). The signature, followed by “\n--end-sig--\n” (line
0481), followed by the requested RSA Public Key (line 0484) is then sent to
the client connection.

If the database server returned no results, the requested RSA Public Key was
not found in the SCOOBY.publics database table. This fact is logged to the
logfile (line 0489), then the string “NOSIG”, followed by “\n--end-sig--\n”
(line 0495), followed by the string “NOTFOUND” is sent to the client connec-
tion.

The client connection is then closed (line 0501) and the child process exits
properly (line 0502), enabling the parent to check for, and subsequently,
reap zombies.

The Responding Service then iterates, ready for the next client connection.

7

1.2 The Executive.pm Module

The Executive.pm module6 is the smallest module within the facility. De-
spite its size, this source code plays a critical role within the environment.

This code is designed to be “used” by other Perl programs, so line 0710 de-
clares the package name-space for this module to be “Mobile::Executive”.
Lines 0719-0732 are as required by the Perl module creation machinery. Note
the automatic exportation of a single subroutine (on line 0723) and three
scalar variables (lines 0724-0726). Five constant values are defined on line
0734-0738.

Perl is an interpreter. As such, source code is not executed until run-time
(after compilation). This behaviour can be changed, in that it is possible to
have some code execute at compile-time. This is accomplished by placing any
compile-time code with a BEGIN block. Within modules, use of such a block
allows some code to execute as soon as the module is “used” by another
program. Within the Executive.pm source code, a BEGIN block (lines 0739-
0756) does two things:

1. Determines the absolute path name of the program that is using the
module (on line 0747).

2. Generates an RSA Public/Private Key Pairing for the program that
is using this module (on lines 0748-0755).

The absolute path name of the program using Executive.pm is required
by the Relocation Mechanism. The generated key-pairing is required by the
Security Mechanism.

The on-line documentation to this module is located at the end of the source
code file (lines 0776-0805).

1.2.1 relocate subroutine

Starting on line number: 0757.

This subroutine is never executed by the facility. The Scooby.pm module
(described below) replaces the code in this subroutine with its own imple-
mentation of relocate. As such, the code in Executive.pm’s relocate
subroutine acts simply as a placeholder for the “real” code that is executed

6More properly referred to as the Mobile::Executive module.

8

by the facility. Having said that, it is very important that programs that use
this module provide the required parameters to the relocate call. With-
out these two values, the facility (nor anything else) can work out which
Location and protocol port number to use for relocation.

9

1.3 The Scooby.pm Module

The Scooby.pm module implements the debugging facility that forms the
“guts” of the facility. Unlike the other modules in the facility, the Scooby
debugger is not able to take advantage of the constant module7. Conse-
quently, the start of the source code defines a number of “our” variables as
constants. These values are lexically scoped to the entire source code file8

(lines 0829-0840). Although they are read/write by default, the intention is
that they should be treated as read-only.

The on-line documentation to the module starts on line 1360 and extends
through line 1408.

For a debugger to function within the Perl environment, it must be declared
within the DB name-space. The Scooby.pm module does this on line 0845.
All of the code within the Scooby.pm module “lives” within this name-space,
which extends from line 0844 through 1355.

1.3.1 DB subroutine

Starting on line number: 0848.

This subroutine is called for every line in the program that can be break-
pointed. Three scalar variables (that are “global” to the debugger) are set on
line 0854: the current name-space ($package), the current filename ($file)
and the current line number ($line). The latter two values are used by the
sub subroutine (described below).

1.3.2 sub subroutine

Starting on line number: 0856.

This subroutine is called prior to every invocation of a subroutine call within
the debugged program. It receives as parameters the same values are passed
to the original subroutine call. The name of the current subroutine is as-
signed to the $sub scalar.

If the invoked subroutine call is to the Mobile::Executive::relocate sub-
routine (line 0864), code is executed to replace the invocation with replace-
ment code (in lines 0866-1005). If the subroutine call is to any other named

7Just why this is so remains a complete mystery.
8Known as “global” in the Perl world.

10

subroutine, the sub subroutine first checks to see if the subroutine received
any parameters (line 1009). If it did, the original subroutine is invoked with
the parameters (line 1011) or without them (line 1015).

A collection of Perl modules are used by the debugger (lines 0866-0869).
The first parameter to relocate is then assigned to the $remote scalar the
used to determine the IP address (in dotted-decimal notation) of the next
Location (lines 0871-0874). The second parameter to the original invocation
of relocate is then assigned to the $remote port scalar, then the name
of the current file and - critically - the name of the next line to execute is
remembered (lines 0875-0877).

Lines 0878-0890 determines the names of any “my” lexical variables currently
being used within the calling scope (line 0881), freezes them (line 0883),
before thawing them and converting the variables and their values into ap-
propriately formatted Perl source code (lines 0886-0890). The peek my sub-
routine is provided by the PadWalker module, and the freeze and thaw
subroutines are provided by the Storable subroutine. The generated Perl
source code is assigned to the $stringified scalar.

Lines 0892-0898 open the Scooby configuration file (line 0892) and extract
the IP name (or address) of the Key Server (lines 0894-0897), ultimately
assigning it to the $key server scalar (line 0898).

With the name/address of the Key Server known, lines 0901-0902 contact
the Key Server and request the RSA Public Key for the Key Server itself
(0901), in addition to the next Location (0902).

Lines 0903-0923 perform the first mutation of the mobile agent’s source
code. The original source code disk-file is opened on line 0903. A temporary
filename is created (line 0907), and then opened on line 0908. The original
file is then read one-line-at-a-time, and written to the temporary disk-file
(lines 0912-0921). When the current line count is equal to the remembered
next line to execute (less one), the generated Perl source code (stored in the
$stringified scalar) is inserted into the temporary disk-file (lines 0917-
0920). Both disk-files are then closed (lines 0922-0923).

At this point, the original source code has been mutated to include the
necessary Perl statements required to reinitialize any lexical variables after
relocation.

The just-created temporary disk-file is then read back into memory (start-
ing on line 0926), stored in the @entire toencrypt array (0927), then
deleted from local disk-storage (line 0931). Lines 0932-0950 encrypt the now
memory-resident source code with the RSA Public Key of the next Location,

11

producing cyphertext (line 0939). This cyphertext is then digitally signed
using the RSA Private Key of the mobile agent (lines 0946-0950). The next
Location can use the RSA Public Key assigned to the mobile agent to verify
the signature of any received cyphertext (which allows it to decide whether
it is authentic or not), then decrypt the cyphertext with its own RSA Private
Key.

Lines 0952-0966 begin the process of communicating with the next Location.
A connection is established (line 0957), auto-flushing is switched on (lines
0960-0962), then the remembered filename and next line number are sent
(lines 0964 and 0966, respectively).

Lines 0970-0995 register the RSA Public Key of the mobile agent with the
Key Server. The key is first written to (lines 0976-0978), then read from
the local disk-storage (lines 0979-0982). The is deliberate. The Key Server
expects all RSA Public Key’s to be in the written-to-disk-file-format pro-
duced by the Crypt::RSA module. Up until this point, the mobile agent’s
RSA Public Key has only existed in memory, so it needs to be written to a
disk-file to force it into the expected format. Once read back in (lines 0979-
0982), it is immediately deleted from the local disk-storage (line 0984) as it
is no longer needed. A connection is established with the Key Server (lines
0986-0988), then the RSA Public Key is sent (lines 0993 and 0994), before
closing the connection to the Key Server (line 0995).

The subroutine then waits for the Key Server to confirm that the key regis-
tration has been successful (line 0997).

After the confirmation, the digital signature and the cyphertext is sent to
the next Location (on lines 0999 and 1001), before closing the connection
(line 1002) and aborting the executing of the mobile agent (by calling exit
on line 1004).

The mobile agent has been mutated, encrypted, digitally signed and sent to
the next Location. It is no longer running on the machine that most recently
executed it.

1.3.3 wait for pkplus confirm subroutine

Starting on line number: 1021.

This subroutine requests the mobile agent’s RSA Public Key from the key
Server. It returns when the Key Server successfully sends the key.

After using the IO::Socket module (line 1032), the three provided param-

12

eters are assigned to lexically scoped variables (lines 1034, 1035 and 1036).
Starting from the assumption that the acknowledgment has not occurred
yet (line 1038), the code loops until it is confirmed (lines 1039-1081.

A connection is established with the Key Server (lines 1042-1050), the re-
quest is sent (lines 1053-1054), a response is received (lines 1062-1064), then
the connection is closed (line 1067). Line 1071 extracts the signature-part
and the key-part from the message received from the Key Server, then a
check on the signature-part is performed (line 1073). If the signature reads
“NOSIG”, the registration has not yet completed and another iteration is
confirmed (line 1075). If the signature does not read “NOSIG”, success is
assumed, and the loop is allowed to end (line 1079).

The calling code can now continue, safe in the knowledge that the requested
RSA Public Key exists within the Key Server.

1.3.4 get store pkplus subroutine

Starting on line number: 1083.

This subroutine contacts the Key Server, requests a particular RSA Public
Key, then stores the key within an appropriately named disk-file.

Two required modules (Crypt::RSA and IO::Socket) are used on line 1095
and 1096, respectively. The three required parameters are then assigned to
lexically scoped variables (lines 1098-1100), then a connection to the Key
Server is established (lines 1102-1140). The request is then sent to the Key
Server (lines 1112-1113) and a response is received (lines 1118-1125).

Line 1129 extracts the signature-part and key-part from the message received
from the Key Server, then the signature-part is checked. If it reads “NOSIG”
(line 1130), the code aborts (line 1132) as no RSA Public Key has been
found, which is a sure sign of trouble.

If the signature reads “SELFSIG” (line 1135), the RSA Public Key for the
Key Server has been received, and it is stored to an appropriately named
disk-file (lines 1136-1142).

Any other signature is verified against the RSA Public Key of the Key
Server (lines 1146-1158). If the verification fails (line 1160), the program
aborts (line 1162), otherwise the received RSA Public Key is stored in an
appropriately named disk-file (lines 1166-1171).

13

1.3.5 check modules on remote subroutine

Starting on line number: 1176.

This subroutine contacts the next Location and tries to determine if a list
of “used” classes exist on the next Location.

The three required parameters identify the next Location (lines 1186 and
1187) and provide the list of classes to check for (line 1188). Some standard
Socket API code establishes a connection with the next Location (lines 1190-
1201), then sends the list of classes to check (line 1204).

An alarm is set to expire in 10 seconds (lines 1212-1214), then the code
attempts to receive a response from the next Location (lines 1217-1219). This
code guards against the possibility of the next Location crashing during this
phase of the relocation. If the alarm signals, an appropriate warning message
is displayed (line 1231) upon expiration. If any other error occurred, the
code aborts (line 1229). If a response is received before the alarm expires,
the alarm is canceled (line 1219) and the response from the next Location
is returned to the calling code (line 1234).

1.3.6 storable decode subroutine

Starting on line number: 1237.

This subroutine takes the “thawed” material from the sub subroutine and
converts it into Perl source code.

In addition to the thawed material, this subroutine also receives as parame-
ters the IP name/address and protocol port number that the next Location
is running on (lines 1251-1253).

Three lexicals are then declared:

%for refs - a hash containing the names and memory addresses of all ref-
erenced variables.

$stringified - a scalar which will end up containing the Perl source code
that can be used to reinitialize the values of any lexicals within the
current scope.

@required classes - an array of class names for any objects existing within
the current scope.

14

The thawed material is then iterated over twice.

The first pass extracts the values from the thawed material (which is stored
within a hash called %thawed), assigning each variable name and value to
scalars called (believe it or not) $name and $value (line 1268). Each iteration
checks to see if the value associated with the variable name is referring to a
scalar value (line 1270), an array (line 1283) or a hash (line 1288).

If the name refers to a scalar, the %for refs hash is updated with the
memory address of the scalar referred to (line 1272). Anything written to the
%for refs hash is used within the second pass (which is discussed below). A
check to see if the scalar value is a number is performed (line 1274) in order
to determine whether or not the scalar value needs to be enclosed within
double quotes (line 1276) or not (line 1280). Note how the value associated
with the scalar reference is extracted by accessing the value associated with
the memory location referred to by $value (using $$value). Also, note how
the $stringified scalar is “built up” with each iteration, but concatenating
its previous contents with the additional Perl code within the if block9.

If the name refers to an array, the %for refs hash is updated with the mem-
ory address of the array referred to (line 1285). When an array is found, its
value(s) are assigned to the name using the standard quote-words operator,
qw (line 1286).

If the name refers to a hash, the %for refs hash is updated with the memory
address of the hash referred to (line 1290). The $stringified scalar is
updated to include the code to reconstitute the hash on lines 1291-1296.

The second pass (beginning on line 1301) processes the %thawed hash again,
this time in an effort to see if the value refers to an object (line 1304) or to
a reference to another variable (line 1323).

If the value refers to an object, Dumper from the Data::Dumper module is
used to convert the object into a textual form (line 1310). This textual form
is then used to update the $stringified scalar (lines 1313-1319). Note how
line 1306 pushes the name of the class onto the @required classes array.

If the value refers to a reference, a reference to the variable name is added
to the $stringified scalar (line 1325).

This subroutine ends by checking the next Location for the determined list
of used classes (if there are any) on lines 1332-1350. If any of the required
classes are missing, the code aborts on line 1343. If anything else occurs, the
code aborts on line 1348. If all is well, the code continues and the value of

9The concatenation operator in Perl is: . (i.e., dot).

15

$stringified is returned to the calling code (line 1353).

The $stringified scalar now contains a series of Perl source code state-
ments that can be used to reinitialize any lexical variables that were in scope
immediately prior to the relocate invocation.

16

1.4 The Location.pm Class

The Location.pm class10 provides for the creation of Locations within the
environment that runs the facility. This Perl module is of the object-oriented
variety - its a class.

This class is designed to be used by other Perl programs.

Lines 1426-1433 uses a collection of Perl modules, and line 1435 installs a
signal handler for CHLD signals (ensuring that no child processes remain in
a zombied state for any length of time). A series of constants are defined on
lines 1437-1447, and two “global” variables are defined: $VERSION on line
1436, and $ PWD on line 1448. The former is required by the Perl module
creation mechanisms, and the latter holds the initial working directory for
the Location.

The on-line documentation to the module starts on line 2168 and extends
through line 2246.

1.4.1 new method

Starting on line number: 1453.

This is the object’s constructor, and it instantiates an Mobile::Location
object (lines 1471-1472). The five settable attributes of the object are initial-
ized (lines 1473-1477), then lines 1479-1481 untaint the Locations environ-
ment and path (for security reasons). Lines 1483-1485 determine, untaint
and set the current working directory by assigning to the $ PWD “global”
variable.

If the Location is running under superuser privilege (as ‘root’), it aborts
with an appropriate error message (line 1487). Additional attributes are set
within the object (on lines 1491 and 1493). These values will be used later
by the class methods.

The constructor concludes by spawning two subprocesses (on lines 1500 and
1502), before returning an object reference to the calling code (1503).

1.4.2 logger method

Starting on line number: 1508.
10More properly referred to as the Mobile::Location class.

17

This method is very similar to the self-same named subroutine with the Key
Server source code. A logfile is opened (line 1517), a message appended to
it (line 1519) and then closed (line 1520).

1.4.3 logger2 method

Starting on line number: 1522.

This method is practically identical to logger, above. The only difference
is that the logfile is opened in the directory immediately above the current
one (note the double-dots on line 1533). The reason for this is that received
mobile agents are executed in the “Location” directory which exists below
the current working directory of the Location, and some status messages are
written to the logfile immediately before re-execution begins.

1.4.4 build index dot html method

Starting on line number: 1538.

This method is very similar to that used within the Key Server source code,
discussed above. An appropriately formed HTML page is created as a result
of a request to the Web-based Monitoring Service. The content of the HTML
page is drawn from the logfile.

1.4.5 build clearlog dot html method

Starting on line number: 1581.

This method is practically identical to the self-same named subroutine from
the Key Server source code, displaying confirmation that the logfile has been
cleared and a backup created.

1.4.6 start web service method

Starting on line number: 1608.

This method is based on the simplehttpd web server from my book, which
is itself based on the sample HTTP server included within the on-line doc-
umentation to the HTTP::Daemon module. This is also very similar to the

18

code within the Key Server source code, described above. Running on pro-
tocol port number 8080, a web server provides a mechanism to access the
contents of the Location’s logfile, as well as reset/backup it.

1.4.7 register with keyserver method

Starting on line number: 1665.

This method generates an RSA Public/Private key-pairing (lines 1676-1686),
stores a copy of the Location’s RSA Private Key within the object’s state
(line 1689), then saves a copy of the RSA Public Key to an appropriately
named disk-file (line 1693). After determining the IP name/address of the
Key Server (lines 1695-1701), the Location then registers its RSA Public
Key with the Key Server (lines 1705-1718).

1.4.8 start concurrent method

Starting on line number: 1721.

This method creates a Location that process multiple relocations concur-
rently. A listening socket object is created (lines 1732-1739), then the Loca-
tion is registered with the Key Server (line 1743). An infinite loop is started
on line 1745, which waits for connections from clients. When one arrives
(line 1747), a subprocess is created (line 1748) to service the relocation (line
1754). While the subprocess services the relocation, the parent process iter-
ates and waits for the next client connection.

1.4.9 start sequential method

Starting on line number: 1761.

This method creates a Location that process multiple relocations sequen-
tially. A listening socket object is created (lines 1770-1777), then the Loca-
tion is registered with the Key Server (line 1781). An infinite loop is started
on line 1784, which waits for connections from clients. When one arrives
(line 1786), this method services the relocation (line 1789), blocking any
new connections. When done, the method iterates and waits for the next
client connection.

19

1.4.10 service client method

Starting on line number: 1792.

This method is (by far) the longest subroutine within the entire facility,
extending from line 1792 through to line 2042. It is the source code within
this method that interacts, and communicates, with the sub subroutine from
the Scooby.pm module (which implements the relocate invocation).

A single parameter is passed to this method: the socket object to communi-
cate on (which is assigned to $socket object on line 1800).

The mobile agent’s filename is received from the connection (line 1801), then
the filename-part (not the path) is extracted on line 1804. The next line
number to execute is then received from the connection (line 1805). Lines
1807-1812 receive the digitally signed cyphertext, then line 1814 extracts
the signature-part and the cyphertext-part of the received message.

Lines 1817-1840 contact the Key Server and request the RSA Public Key of
the communicating mobile agent. The received (digitally signed) key is bro-
ken into its signature-part and key-part (line 1844). If the received signature
reads “NOSIG” (line 1845), the Location aborts (line 1852) after closing the
connection to the client (line 1851).

Assuming a verified digital signature, the mobile agent’s RSA Public Key
is written to an appropriately named disk-file (lines 1854-1857). This key
is then used to verify the digital signature of the received cyphertext (lines
1864-1867), aborting if the mobile agent’s digital signature is not verified
(line 1873).

If verification succeeds, the Location uses its own RSA Private Key to de-
crypt the received cyphertext (lines 1881-1885), aborting if the decryption
was not successful (line 1889). Assuming success, the decrypted source code
(referred to as $plaintext within this method) is converted from a “flat”
string into an array of new-line terminated lines (lines 1893-1898). Con-
verting to this format greatly simplifies the mutation that the Location is
required to perform on the received source code. The source code now exists
in an array called @entire thing.

Lines 1900-1910 ensure that the Location is working within the correct sub-
directory, creating a new directory (within which to work) if needs be.

If the creator of the Location has switched on agent logging, lines 1912-1922
save a copy of the pre-mutated source code to a disk-file with an appropri-
ately unique name (line 1914).

20

A disk-file with the same base name as the received mobile agent is then
created within the disk-storage of the Location (line 1928). A unique label is
generated (line 1931), then the @entire thing array is processed one-line-
at-a-time (starting on line 1934).

The “magic” first line is written to the disk-file (line 1936).

Lines 1937-2003 have been “commented-out” of this version of this method.
If activated, this code would add instructions to the disk-file that would
arrange to execute the source code within a restricted compartment. As dis-
cussed in the Design Deviations section of this document, this functionality
cannot be enabled at this time. However, the source code is ready-and-
waiting to be activated once a fix emerges from the Crypt::RSA developers.

The just-generated label is written to the disk-file (line 2006) as the pa-
rameter to the dreaded goto statement. A variable called $line counter
is then initialized to the value 2. This variable is set to this value to keep
the line count synchronized with the next-line-number-to-execute value re-
ceived from the mobile agent. The rest of the lines of source code within
the @entire thing array are then processed sequentially (lines 2008-2019),
before closing the disk-file on line 2021. Note that the label is added to the
disk-file (line 2014) within the loop whenever the code determines that it
has just written the line that contains the relocate invocation. This addi-
tion, as well as the goto statement at the start of the disk-file, supports the
re-execution of the mobile agent from where it left off when next executed.

A command-line is formed (line 2030), the connection with the mobile agent
is closed (line 2033) and the mobile agent is re-executed using the just formed
command-line (line 2039). Any results returned from the invocation of the
command-line are displayed on the Location’s display (line 2041).

The mobile agent has been received, its digital signature has been verified,
its source code decrypted, mutated and then executed.

1.4.11 spawn web monitoring service method

Starting on line number: 2043.

This method simple spawns a subprocess (line 2050) and starts the Web-
based Monitoring Service within the spawned process (line 2055), assuming
the value associated with the Web attribute within the object is set to true.

21

1.4.12 generate label support subroutine

Starting on line number: 2062.

This subroutine is not part of the object. It is not designed to be invoked
through the object, as it solely exists to provide a support service to the
object methods described above.

This subroutine takes three values (lines 2070-2072), sanitizes one of them to
remove any unwanted characters (line 2074), the combines the three values
with the word “LABEL ” to produce a (hopefully) unique label.

1.4.13 check for modules support subroutine

Starting on line number: 2077.

This subroutine is not part of the object. It is not designed to be invoked
through the object, as it solely exists to provide a support service to the
object methods described above.

Given a list of Perl modules to check for (line 2086), this subroutine cycles
through them (lines 2088-2098) and checks to see if they are installed within
the Location’s Perl system (line 2091) and, if it does not, adds the name of
the module to an array (line 2097).

This subroutine ends by returning the list of modules not found on line 2100.

1.4.14 spawn network service support subroutine

Starting on line number: 2102.

This subroutine is not part of the object. It is not designed to be invoked
through the object, as it solely exists to provide a support service to the
object methods described above.

This subroutine creates a subprocess that waits to be contacted at a prede-
termined protocol port number, which is passed as a parameter (line 2109).
Once contacted, the code treats the message received as a list of modules.
This list of modules are then checked to see if they exist within the Loca-
tion’s Perl system.

Line 2114 creates a subprocess, then the if block (lines 2117-2157) imple-
ments a network server (within the subprocess) that waits for connections

22

from a mobile agent (line 2132), receives a message (lines 2138-2144), turns
the message into a list of module names (line 2145), then checks for their
existence (line 2146). If any of the modules are NOT found (line 2147), the
string “NOK: ” together with the list of not found modules are returned the
mobile agent over the network connection (line 2149). If all the modules ex-
ist, the string “OK” is returned to the mobile agent (line 2153). The network
connection to the mobile agent is then closed (line 2158).

23

1.5 The Scooby Source Code

This appendix presents the entire source code to the facility. Each non-blank
line is numbered. For type-setting purposes, some lines are extended over
more than one line in order to fit within the printed page. Such lines still
only warrant an individual line number.

24

1.6 The Key Server Source Code

0001 #! /usr/bin/perl -w

0002 # keyserver - The Responder/Registration Public-Key Service for use with the

0003 # Devel::Scooby, Mobile::Executive and Mobile::Location modules.

0004 #

0005 # Author: Paul Barry, paul.barry@itcarlow.ie

0006 # Create: April 2003.

0007 # Update: May 2003 - added support for new protocol_port field in database.

0008 # - added support for logging to the LOGFILE.

0009 # - added support for HTTP web-based monitoring.

0010 our $VERSION = 1.04;

0011 use strict;

0012 use Crypt::RSA; # Provides signing service for authentication.

0013 use HTTP::Daemon; # Provides a basic HTTP server.

0014 use HTTP::Status; # Provides support for HTTP status messages.

0015 use IO::Socket; # Provides OO interface to TCP/IP sockets API.

0016 use Net::MySQL; # Allows for direct communications with MySQL db.

0017 use POSIX ’WNOHANG’; # Ensures POSIX-compliant handling of "zombies".

0018 use Sys::Hostname; # Provides a means of determining the name of machine.

0019 use constant KEYSRV_PASSWD => ’keyserver’;

0020 use constant KEY_SIZE => 1024;

0021 use constant ENABLED_LOGGING => 1; # Set to 0 to disable logging to

LOGFILE.

0022 use constant ENABLED_PRINTS => 1; # Set to 0 to disable screen

messages.

0023 use constant SIGNATURE_DELIMITER => "\n--end-sig--\n";

0024 use constant HTML_DEFAULT_PAGE => "index.html";

0025 use constant HTTP_PORT => 8080;

0026 use constant CONFIGHOSTS_FILE => ’.keyserverrc’;

0027 use constant RESPONDER_PPORT => ’30001’;

0028 use constant REGISTRATION_PPORT => ’30002’;

0029 use constant LOCALHOST => ’127.0.0.1’;

0030 use constant KEYDB_HOST => ’localhost’;

0031 use constant KEYDB_DB => ’SCOOBY’;

0032 use constant KEYDB_USER => ’perlagent’;

0033 use constant KEYDB_PASS => ’passwordhere’;

0034 use constant TRUE => 1;

0035 use constant FALSE => 0;

0036 use constant LOGFILE => ’keyserver.log’;

0037 use constant VISIT_SCOOBY => ’Visit the <a href="http://glasnost.

itcarlow.ie/~scooby/">Scooby Website

 at IT Carlow.<p>’;

0038 # The "%allowed_connections" hash is written to during the start-up phase

0039 # of this program. It is referred to later, but should NEVER be written to.

25

0040 our %allowed_connections = (); # XXXXX: this is a ’global’.

0041 # Install a signal-handler to kill off "zombies" should they arise.

0042 $SIG{CHLD} = sub { while ((my $kid = waitpid(-1, WNOHANG)) > 0) { } };

0043 ##

0044 # Support subroutines start here.

0045 ##

0046 sub _logger {

0047 # This small routine quickly writes a message to the LOGFILE. Note that

0048 # every line written to the LOGFILE is timestamped.

0049 #

0050 # Note: a more "efficient" implementation would open the LOGFILE when

0051 # the keyserver starts up then append to it as required. This method

0052 # will do for now.

0053 # IN: a message to log.

0054 #

0055 # OUT: nothing.

0056 # Open the LOGFILE for append >>.

0057 open KEY_LOGFILE, ">>" . LOGFILE

0058 or die "keyserver: unable to append to this keyserver’s LOGFILE.\n";

0059 print KEY_LOGFILE scalar localtime, ": @_\n";

0060 close KEY_LOGFILE;

0061 }

0062 sub _build_index_dot_html {

0063 # Builds the INDEX.HTML file (used by _start_web_service).

0064 #

0065 # IN: nothing.

0066 #

0067 # OUT: nothing (although "index.html" is created).

0068 open HTMLFILE, ">index.html"

0069 or die "Fatal error: index.html cannot be written to: $!.\n";

0070 print HTMLFILE<<end_html;

0071 <HTML>

0072 <HEAD>

0073 <TITLE>Welcome to the Key Server’s Web-Based Monitoring Service.</TITLE>

0074 </HEAD>

0075 <BODY>

0076 <h2>Welcome to the Key Server’s Web-Based Monitoring Service</h2>

0077 end_html

0078 print HTMLFILE "Key Server running on: " . hostname() . ".<p>";

0079 print HTMLFILE "Key Server date/time: " . localtime() . ".<p>";

0080 print HTMLFILE<<end_html;

0081 Click here to reset the log.

0082 <h2>Logging Details</h2>

0083 <pre>

26

0084 end_html

0085 open HTTP_LOGFILE, LOGFILE

0086 or die "keyserver: the LOGFILE is missing - aborting.\n";

0087 while (my $logline = <HTTP_LOGFILE>)

0088 {

0089 print HTMLFILE "$logline";

0090 }

0091 close HTTP_LOGFILE;

0092 print HTMLFILE<<end_html;

0093 </pre>

0094 end_html

0095 print HTMLFILE VISIT_SCOOBY;

0096 print HTMLFILE<<end_html;

0097 </BODY>

0098 </HTML>

0099 end_html

0100 close HTMLFILE;

0101 }

0102 sub _build_clearlog_dot_html {

0103 # Builds the CLEARLOG.HTML file (used by _start_web_service).

0104 #

0105 # IN: the name of the just-created backup file.

0106 #

0107 # OUT: nothing (although "clearlog.html" is created).

0108 my $backup_log = shift;

0109 open CLEARLOG_HTML, ">clearlog.html"

0110 or die "Fatal error: clearlog.html cannot be written to: $!.\n";

0111 print CLEARLOG_HTML<<end_html;

0112 <HTML>

0113 <HEAD>

0114 <TITLE>Key Server’s Logfile Reset.</TITLE>

0115 </HEAD>

0116 <BODY>

0117 <h2>Key Server’s Logfile Reset</h2>

0118 The previous logfile has been archived as: $backup_log<p>

0119 Return to the Key Server’s main page.<p>

0120 end_html

0121 print CLEARLOG_HTML VISIT_SCOOBY;

0122 print CLEARLOG_HTML<<end_html;

0123 </BODY>

0124 <HTML>

0125 end_html

0126 close CLEARLOG_HTML;

0127 }

27

0128 sub _start_web_service {

0129 # Starts a small web server running on port HTTP_PORT. Provides for

0130 # some simple monitoring of the keyserver.

0131 #

0132 # IN: nothing.

0133 #

0134 # OUT: nothing.

0135 my $httpd = HTTP::Daemon->new(LocalPort => HTTP_PORT,

0136 Reuse => 1)

0137 or die "keyserver: could not create HTTP daemon on " .

0138 HTTP_PORT . ".\n";

0139 while (my $http_client = $httpd->accept)

0140 {

0141 if (my $service = $http_client->get_request)

0142 {

0143 my $request = $service->uri->path;

0144 if ($service->method eq ’GET’)

0145 {

0146 my $resource;

0147

0148 if ($request eq "/" || $request eq "/index.html")

0149 {

0150 $resource = HTML_DEFAULT_PAGE;

0151 _build_index_dot_html;

0152 $http_client->send_file_response($resource);

0153 }

0154 elsif ($request eq "/clearlog.html")

0155 {

0156 # Create a name for the backup log.

0157 my $backup_log = "keyserver." . localtime() . ".log" ;

0158 # Make the backup, delete the LOGFILE, then recreate it.

0159 system("cp", LOGFILE, $backup_log) ;

0160 unlink LOGFILE;

0161 _logger("KEYSERVER: log reset.") if ENABLED_LOGGING;

0162 _build_clearlog_dot_html($backup_log);

0163 $http_client->send_file_response("clearlog.html");

0164 }

0165 else

0166 {

0167 $http_client->send_error(RC_NOT_FOUND);

0168 }

0169 }

0170 else

0171 {

0172 $http_client->send_error(RC_METHOD_NOT_ALLOWED);

0173 }

0174 }

0175 }

0176 continue

0177 {

0178 $http_client->close;

28

0179 undef($http_client);

0180 }

0181 }

0182 sub _start_registration_service {

0183 # The Registration Service waits passively at protocol port number

0184 # REGISTRATION_PPORT for TCP-based connections. When one arrives,

0185 # the IP address of the client is determined, a protocol port number is

0186 # received, followed by a PK+. These values are either added to the

0187 # ’SCOOBY.publics’ table or used to update an existing entry in

0188 # the ’SCOOBY.publics’ table.

0189 #

0190 # A request to add LOCALHOST and RESPONDER_PPORT to the database is

0191 # REJECTED, as these values are used by the keyserver to store it’s own

0192 # PK+.

0193 # No ACK is provided to the client. Clients can use the Responder

0194 # Service to check that their PK+ has been added to the database.

0195 #

0196 # IN: nothing.

0197 #

0198 # OUT: nothing.

0199 my $registration_socket = IO::Socket::INET->new(

0200 LocalPort => REGISTRATION_PPORT,

0201 Listen => SOMAXCONN,

0202 Proto => ’tcp’,

0203 Reuse => TRUE

0204);

0205 if (!defined($registration_socket))

0206 {

0207 _logger("REGISTRATION: could not create initial socket - fatal.")

if ENABLED_LOGGING;

0208 die "keyserver: (registration): could not create socket: $!.\n";

0209 }

0210 print "The Registration Service is starting up on port: ",

0211 $registration_socket->sockport, "\n" if ENABLED_PRINTS;

0212 _logger("REGISTRATION: up on port: " . $registration_socket->sockport .

".") if ENABLED_LOGGING;

0213 # Servers are permanent - they NEVER end.

0214 while (TRUE)

0215 {

0216 next unless my $from_socket = $registration_socket->accept;

0217 if (!exists

$allowed_connections{ inet_ntoa($from_socket->peeraddr) })

0218 {

0219 _logger("REGISTRATION: unauthorized host " .

0220 inet_ntoa($from_socket->peeraddr) .

0221 " rejected.") if ENABLED_LOGGING;

0222 print "Warning: request from an unauthorized host (" .

0223 inet_ntoa($from_socket->peeraddr) .

0224 ") rejected.\n" if ENABLED_PRINTS;

29

0225 print $from_socket "keyserver: you are NOT permitted to talk:

disconnecting ... \n";

0226 $from_socket->close;

0227 next;

0228 }

0229 # Create a sub-process to serve client.

0230 _logger("REGISTRATION: creating subprocess.") if ENABLED_LOGGING;

0231 next if my $pid = fork;

0232

0233 if ($pid == 0)

0234 {

0235 # The registration socket is not needed in child so it’s closed.

0236 $registration_socket->close;

0237 # Determine the IP address of the other end of the socket.

0238 my $peer_ip = inet_ntoa($from_socket->peeraddr);

0239 # Receive the protocol port number from the socket.

0240 my $peer_port = <$from_socket>;

0241 # Untaint the value of "$peer_port", using a regex.

0242 $peer_port =~ /^(\d{1,5})$/;

0243 $peer_port = $1;

0244 if (!defined($peer_port))

0245 {

0246 _logger("REGISTRATION: invalid protocol port received from

$peer_ip.") if ENABLED_LOGGING;

0247 print "Warning: invalid protocol port received - request

ignored.\n" if ENABLED_PRINTS;

0248 print $from_socket "keyserver: you sent an invalid protocol

port number - disconnecting ... \n";

0249 # No more client interaction.

0250 close $from_socket;

0251 # Short-circuit as it is not possible to continue without a

0252 # valid protocol port number.

0253 next;

0254 }

0255 if ($peer_ip eq LOCALHOST && $peer_port eq RESPONDER_PPORT)

0256 {

0257 _logger("KEYSERVER: attempt to add PK+ for keyserver to

database - ignored.") if ENABLED_LOGGING;

0258 print "Warning: attempt to add PK+ for keyserver to database

- ignored.\n" if ENABLED_PRINTS;

30

0259 print $from_socket "You cannot update the keyserver’s PK+

- disconnecting ... \n";

0260 # No more client interaction.

0261 close $from_socket;

0262 # Short-circuit: LOCALHOST and RESPONDER_PPORT are RESERVED.

0263 next;

0264 }

0265 # Note: we blindly trust that the client does indeed send a

0266 # PK+ value. It’s perhaps more prudent to check the PK+

0267 # before adding it to the database? Ah, time, if only I

0268 # had more of it ...

0269 my @entire_key = <$from_socket>;

0270 close $from_socket;

0271 my $connection = Net::MySQL->new(

0272 hostname => KEYDB_HOST,

0273 database => KEYDB_DB,

0274 user => KEYDB_USER,

0275 password => KEYDB_PASS

0276);

0277 if ($connection->is_error)

0278 {

0279 _logger("REGISTRATION: could not contact database - fatal.")

if ENABLED_LOGGING;

0280 die "keyserver: (registration): " .

0281 $connection->get_error_message . ".\n";

0282 }

0283 # Check to see if we need to do an INSERT or an UPDATE.

0284 my $query = ’select ip_address ’ .

0285 ’from publics where ’ .

0286 "(ip_address = \"$peer_ip\" and " .

0287 "protocol_port = \"$peer_port\")";

0288 $connection->query($query);

0289 _logger("REGISTRATION: querying DB for existing

$peer_ip/$peer_port combination.") if ENABLED_LOGGING;

0290 # This next line suppresses the warning messages from

0291 # the Net::MySQL module - they are NOT needed/wanted here.

0292 local $SIG{__WARN__} = sub {}; # Comment-out this line when

testing.

0293 my $iterator = $connection->create_record_iterator;

0294 my $rec = $iterator->each;

0295 if (ref($rec) eq ’ARRAY’)

0296 {

0297 # The ip_address/protocol-port/key already exist, so do

an UPDATE.

31

0298 _logger ("REGISTRATION: updating $peer_ip/$peer_port.")

if ENABLED_LOGGING;

0299 print "[UPDATE] Updating the PK+ for $peer_ip/$peer_port.\n"

if ENABLED_PRINTS;

0300 $query = ’update publics set ’ .

0301 "public_key = \"@entire_key\" where " .

0302 "(ip_address = \"$peer_ip\" and " .

0303 "protocol_port = \"$peer_port\")";

0304 }

0305 else

0306 {

0307 # The ip_address/protocol-port/key are new, so do an INSERT.

0308 _logger ("REGISTRATION: inserting $peer_ip/$peer_port.")

if ENABLED_LOGGING;

0309 print "[INSERT] Inserting the $peer_ip/$peer_port pairing.\n"

if ENABLED_PRINTS;

0310 $query = ’insert into publics ’ .

0311 ’(ip_address, protocol_port, public_key) values ’ .

0312 "(\"$peer_ip\", \"$peer_port\", \"@entire_key\")";

0313 }

0314 $connection->query($query);

0315 # We assume a successful insert/update, which may be a little

0316 # naive. Of course, the client can always use the Responder

0317 # Service to check the state of the database, if required.

0318 exit 0;

0319 }

0320 $from_socket->close;

0321 }

0322 }

0323 sub _start_responder_service {

0324 # The Responder Service waits passively at protocol port number

0325 # RESPONDER_PPORT for TCP-based connections. When one arrives,

0326 # the IP address of the client is determined, then an IP address and

0327 # protocol port number is received. These are then used to look-up a PK+

0328 # from the ’SCOOBY.publics’ table. If a PK+ is found in the database,

0329 # it is read from the ’SCOOBY.publics’ table, signed by the

0330 # keyserver, then sent to the client. If the PK+ is NOT found, the

0331 # string ’NOSIG’ followed by ’NOTFOUND’ is sent to the client.

0332 #

0333 # Note: the PK+ is signed, but NOT encrypted. There is no need to

0334 # add a further level of security. The signature is enough, and the

0335 # PK+ is a public key, after all.

0336 #

0337 # If a request is received for IP address LOCALHOST and protocol port

0338 # RESPONDER_PPORT, then the PK+ is looked-up and sent UNSIGNED. This is

0339 # due to the fact that it does not make sense to sign the PK+ for

0340 # the keyserver, as the client most likely needs the PK+ to verify

0341 # signatures. The string "SELFSIG" (followed by the PK+) is sent in

0342 # this case.

0343 #

32

0344 # IN: nothing.

0345 #

0346 # OUT: nothing.

0347 my $responder_socket = IO::Socket::INET->new(

0348 LocalPort => RESPONDER_PPORT,

0349 Listen => SOMAXCONN,

0350 Proto => ’tcp’,

0351 Reuse => TRUE

0352);

0353 if (!defined($responder_socket))

0354 {

0355 _logger("RESPONDER: could not create initial socket - fatal.")

if ENABLED_LOGGING;

0356 die "keyserver: (responder): could not create socket: $!.\n";

0357 }

0358 print "The Responder Service is starting up on port: ",

0359 $responder_socket->sockport, "\n" if ENABLED_PRINTS;

0360 _logger("RESPONDER: up on port: " . $responder_socket->sockport . ".")i

if ENABLED_LOGGING;

0361 # Servers are permanent - they NEVER end.

0362 while (TRUE)

0363 {

0364 next unless my $from_socket = $responder_socket->accept;

0365 if (!exists

$allowed_connections{ inet_ntoa($from_socket->peeraddr) })

0366 {

0367 _logger("RESPONDER: unauthorized host " .

0368 inet_ntoa($from_socket->peeraddr) .

0369 " request rejected.") if ENABLED_LOGGING;

0370 print "Warning: request from an unauthorized host (" .

0371 inet_ntoa($from_socket->peeraddr) .

0372 ") rejected.\n" if ENABLED_PRINTS;

0373 print $from_socket "keyserver: you are NOT permitted to talk:

disconnecting ... \n";

0374 $from_socket->close;

0375 next;

0376 }

0377 # Create a sub-process to serve client.

0378 next if my $pid = fork;

0379

0380 if ($pid == 0)

0381 {

0382 # The Responder Socket is not needed in child, so it’s closed.

0383 $responder_socket->close;

0384 # Receive the IP address and protocol port number to lookup.

33

0385 my $ip_lookup = <$from_socket>;

0386 chomp($ip_lookup);

0387 my $port_lookup = <$from_socket>;

0388 # Untaint the value of "$ip_lookup", using a regex.

0389 $ip_lookup =~ /^(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})$/;

0390 $ip_lookup = $1;

0391 if (!defined($ip_lookup))

0392 {

0393 _logger ("RESPONDER: invalid IP address sent - request

ignored.") if ENABLED_LOGGING;

0394 print "Warning: invalid IP address sent to Responder Service

- request ignored.\n" if ENABLED_PRINTS;

0395 print $from_socket "keyserver: you sent an invalid IP

address - disconnecting ... \n";

0396 # No more client interaction.

0397 close $from_socket;

0398 # Short-circuit as it is not possible to continue without a

0399 # valid IP address.

0400 next;

0401 }

0402 # Untaint the value of "$port_lookup", using a regex.

0403 $port_lookup =~ /^(\d{1,5})$/;

0404 $port_lookup = $1;

0405 if (!defined($port_lookup))

0406 {

0407 _logger("RESPONDER: invalid protocol port sent by

$ip_lookup - request ignored.") if ENABLED_LOGGING;

0408 print "Warning: invalid protocol port sent to Responder

Service - request ignored.\n" if ENABLED_PRINTS;

0409 print $from_socket "keyserver: you sent an invalid protocol

port number - disconnecting ... \n";

0410 # No more client interaction.

0411 close $from_socket;

0412 # Short-circuit as it is not possible to continue without a

0413 # valid protocol port number.

0414 next;

0415 }

0416 my $connection = Net::MySQL->new(

0417 hostname => KEYDB_HOST,

0418 database => KEYDB_DB,

0419 user => KEYDB_USER,

34

0420 password => KEYDB_PASS

0421);

0422 if ($connection->is_error)

0423 {

0424 _logger("RESPONDER: could not contact database - fatal.")

if ENABLED_LOGGING;

0425 die "keyserver: (responder): " .

0426 $connection->get_error_message . ".\n";

0427 }

0428 print "Checking the PK+ value for $ip_lookup/$port_lookup.\n"

if ENABLED_PRINTS;

0429 # Check to see if the ip_address/protocol port exists in the db.

0430 my $query = ’select public_key ’ .

0431 ’from publics where ’ .

0432 "(ip_address = \"$ip_lookup\" and " .

0433 "protocol_port = \"$port_lookup\")";

0434 $connection->query($query);

0435 _logger("RESPONDER: querying DB for existing

$ip_lookup/$port_lookup combination.") if ENABLED_LOGGING;

0436 # This next line suppresses the warning messages from

0437 # the Net::MySQL module - they are NOT needed/wanted here.

0438 local $SIG{__WARN__} = sub {}; # Comment-out this line when

testing.

0439 my $iterator = $connection->create_record_iterator;

0440 my $rec = $iterator->each;

0441 # If the ip_address/protocol-port/key exist, send the PK+.

0442 if (ref($rec) eq ’ARRAY’)

0443 {

0444 if ($ip_lookup eq LOCALHOST && $port_lookup eq

RESPONDER_PPORT)

0445 {

0446 _logger("RESPONDER: sending my PK+ to " .

0447 inet_ntoa($from_socket->peeraddr) . ".")

if ENABLED_LOGGING;

0448 print " -> No need to sign PK+ for keyserver.\n"

if ENABLED_PRINTS;

0449 print " --> Sending SELFSIG to client (" .

0450 inet_ntoa($from_socket->peeraddr) .

0451 ").\n" if ENABLED_PRINTS;

0452 # The ip_address is that of the keyserver, so send

"SELFSIG".

0453 print $from_socket "SELFSIG" . SIGNATURE_DELIMITER;

0454 print " ---> Sending PK+ for $ip_lookup/$port_lookup

to client.\n" if ENABLED_PRINTS;

0455 # Send the keyserver’s PK+ to the client.

0456 print $from_socket "$rec->[0]";

35

0457 }

0458 else

0459 {

0460 _logger("RESPONDER: sending PK+ for

$ip_lookup/$port_lookup to " .

0461 inet_ntoa($from_socket->peeraddr) . ".")

if ENABLED_LOGGING;

0462 print " -> Signing PK+ for $ip_lookup/$port_lookup.\n"

if ENABLED_PRINTS;

0463 # Get the PK- from it’s disk-file.

0464 my $ksf = LOCALHOST . ’.’ .RESPONDER_PPORT. ’.private’;

0465 my $pkminus = new Crypt::RSA::Key::Private(

0466 Filename => $ksf,

0467 Password => KEYSRV_PASSWD,

0468 Armour => TRUE

0469);

0470 my $rsa = new Crypt::RSA;

0471 # Use the PK- to sign the PK+.

0472 my $signature = $rsa->sign(

0473 Message => $rec->[0],

0474 Key => $pkminus,

0475 Armour => TRUE

0476);

0477 print " --> Sending signature to client (" .

0478 inet_ntoa($from_socket->peeraddr) .

0479 ").\n" if ENABLED_PRINTS;

0480 # Send the printable signature to the client.

0481 print $from_socket "$signature" . SIGNATURE_DELIMITER;

0482 print " ---> Sending PK+ for $ip_lookup/$port_lookup

to client.\n" if ENABLED_PRINTS;

0483 # Send the PK+ to the client.

0484 print $from_socket "$rec->[0]";

0485 }

0486 }

0487 else

0488 {

0489 _logger("RESPONDER: sending NOSIG/NOTFOUND for

$ip_lookup/$port_lookup to " .

0490 inet_ntoa($from_socket->peeraddr) . ".")

if ENABLED_LOGGING;

0491 print " -> Sending NOSIG to client (" .

0492 inet_ntoa($from_socket->peeraddr) .

0493 ").\n" if ENABLED_PRINTS;

0494 # The ip_address/protocol-port does not exist, send "NOSIG".

0495 print $from_socket "NOSIG" . SIGNATURE_DELIMITER;

0496

0497 print " --> Sending NOTFOUND for $ip_lookup/$port_lookup

36

to client.\n" if ENABLED_PRINTS;

0498 # The ip_address/protocol-port does not exist, send

"NOTFOUND".

0499 print $from_socket "NOTFOUND";

0500 }

0501 $from_socket->close;

0502 exit 0;

0503 }

0504 # Not needed in the parent’s code, so it is closed.

0505 $from_socket->close;

0506 }

0507 }

0508 ##

0509 # Main code starts here

0510 ##

0511 # Start by populating the "%allowed_connections" hash from the keyserver’s

0512 # configuration file. Connections from every other IP address/port are

0513 # ignored/rejected.

0514 open CONFIGFILE, CONFIGHOSTS_FILE

0515 or die "keyserver: the .keyserverrc configuration file does not exist:

$!.\n";

0516 while (my $line = <CONFIGFILE>)

0517 {

0518 chomp($line);

0519 my ($host, $port) = split /:/, $line;

0520

0521 $allowed_connections{ $host } = $port;

0522 }

0523 close CONFIGFILE;

0524 print "Accepting connections/requests from:\n" if ENABLED_PRINTS;

0525 while (my ($host, $port) = each %allowed_connections)

0526 {

0527 print " -> $host on port(s): $port.\n" if ENABLED_PRINTS;

0528 }

0529 # Prior to starting the network servers, check the database to see if a

0530 # PK+ value exists for itself (using address LOCALHOST). If it does,

0531 # then things are fine-and-dandy. If the PK+ is missing, both the

0532 # PK- and PK+ keys are regenerated and the database/disk-files updated.

0533 # Begin by opening a new connection to the database.

0534 my $connection = Net::MySQL->new(

0535 hostname => KEYDB_HOST,

0536 database => KEYDB_DB,

0537 user => KEYDB_USER,

0538 password => KEYDB_PASS

0539);

37

0540 if ($connection->is_error)

0541 {

0542 _logger("KEYSERVER: could not contact database - fatal.")

if ENABLED_LOGGING;

0543 die "keyserver: " . $connection->get_error_message . ".\n";

0544 }

0545 # Check to see if an entry exists in the database. Start by assuming

0546 # the worst, that is: there is no PK- in database.

0547 my $pkplus_in_db = FALSE;

0548 my $query = ’select ip_address ’ .

0549 ’from publics where ’ .

0550 ’(ip_address = "’ . LOCALHOST . ’" and ’ .

0551 ’protocol_port = "’ . RESPONDER_PPORT . ’")’;

0552 $connection->query($query);

0553 my $iterator = $connection->create_record_iterator;

0554 my $rec = $iterator->each;

0555 # The $rec scalar will reference an array if an entry was found in the

database.

0556 if (ref($rec) eq ’ARRAY’)

0557 {

0558 $pkplus_in_db = TRUE;

0559 }

0560 if (!$pkplus_in_db)

0561 {

0562 # We need to (re)generate the PK-/PK+ pairing, update the database with

0563 # the PK+ and store the PK- in a disk-file.

0564 my $rsa = new Crypt::RSA;

0565 print "Generating a public/private key-pairing for this keyserver. "

if ENABLED_PRINTS;

0566 print "Please wait ... \n" if ENABLED_PRINTS;

0567 my $ksf = LOCALHOST . ’.’ . RESPONDER_PPORT;

0568 my ($public, $private) =

0569 $rsa->keygen(

0570 Identity => ’Scooby Key Server’,

0571 Size => KEY_SIZE,

0572 Password => KEYSRV_PASSWD,

0573 Filename => $ksf,

0574 Verbosity => FALSE

0575);

0576 print "Generated. Keyserver starting ... \n" if ENABLED_PRINTS;

0577 # The PK+ and PK- now exist in the "LOCALHOST.RESPONDER_PPORT.public"

0578 # and "LOCALHOST.RESPONDER_PPORT.private" disk-files. So, add the PK+

0579 # to the ’SCOOBY.publics’ table.

0580 open KEYFILE, "$ksf.public"

0581 or die "keyserver: The public KEYFILE does not exist: $!.\n";

38

0582 my @entire_keyfile = <KEYFILE>;

0583 close KEYFILE;

0584 # The assumption here is that the entry does NOT exist in the database,

0585 # so we use an INSERT as opposed to an UPDATE statement.

0586 $query = ’insert into publics ’ .

0587 ’(ip_address, protocol_port, public_key) values ’ .

0588 ’("’ . LOCALHOST . ’", "’ . RESPONDER_PPORT . ’", ’ .

0589 "\"@entire_keyfile\")";

0590 $connection->query($query); # We (naively) assume success.

0591 }

0592 else

0593 {

0594 print "Using the existing public/private key-pairing for this

keyserver.\n" if ENABLED_PRINTS;

0595 print "Keyserver starting ... \n" if ENABLED_PRINTS;

0596 }

0597 $connection->close;

0598 # Create a sub-process to handle the monitoring web server.

0599 my $http_pid = fork;

0600 if (!defined($http_pid))

0601 {

0602 _logger("KEYSERVER: unable to create HTTP service.")

if ENABLED_LOGGING;

0603 die "keyserver: unable to create HTTP subprocesses: $!.\n";

0604 }

0605 if ($http_pid == FALSE)

0606 {

0607 _logger("KEYSERVER: starting the HTTP service.") if ENABLED_LOGGING;

0608 _start_web_service if ENABLED_LOGGING;

0609 exit 0; # Which will execute if ENABLED_LOGGING is false.

0610 }

0611 else

0612 {

0613 # With the PK- and PK+ in place, we can now create the Responder and

0614 # Registration services by forking a child process.

0615 my $pid = fork;

0616 if (!defined($pid))

0617 {

0618 _logger("KEYSERVER: unable to create subprocesses.")

if ENABLED_LOGGING;

0619 die "keyserver: unable to create initial subprocesses: $!.\n";

0620 }

0621 if ($pid == FALSE)

0622 {

0623 # This is the child process executing.

39

0624 # This next call is NEVER returned from.

0625 _start_registration_service;

0626 }

0627 else

0628 {

0629 # This is the parent process executing.

0630 # This next call is NEVER returned from.

0631 _start_responder_service;

0632 }

0633 }

0634 ##

0635 # Documentation starts here.

0636 ##

0637 =head1 NAME

0638 keyserver - an RSA-based public keyserver for use with B<Devel::Scooby>

(which includes HTTP monitoring facility at port 8080).

0639 =head1 VERSION

0640 1.04

0641 =head1 SYNOPSIS

0642 Create a ".keyserverrc" configuration file (see FILES), set-up the required

database (see ENVIRONMENT), then invoke the keyserver:

0643 =over 4

0644 ./keyserver

0645 =back

0646 =head1 DESCRIPTION

0647 This keyserver provides three services to clients that communicate with it.

0648 1. The "Responder Service" runs on port B<RESPONDER_PPORT> and listens for

requests from clients. These take the form of an IP address in

dotted-decimal notation, followed by a protocol port number. The IP

address/port-number are looked-up in the SCOOBY.publics table (see

ENVIRONMENT), and - if found - the associated public key is extracted from

the table and signed using this keyserver’s private key. Both the

signature and the public key are then sent to the client.

0649 If the lookup fails, the strings "NOSIG" followed by "NOTFOUND" are returned

to the client.

0650 If the IP address is LOCALHOST (which defaults to 127.0.0.1) and the

protocol port number is RESPONDER_PPORT (which defaults to 30001), then

this program returns the string "SELFSIG" followed by an UNSIGNED copy of

this keyserver’s public key. In this way, a client can retrieve the public

key to use when verifying signatures.

0651 2. The "Registration Service" runs on port B<REGISTRATION_PPORT> and listens

for connections from clients. When on arrives, it is immediately followed

by a protocol port number, then a public key. This key is added to the

SCOOBY.publics table (see ENVIRONMENT) together with the clients IP address

40

in dotted-decimal notation and the protocol port number. For obvious

reasons, the received public key is NOT signed by the client.

0652 Note that changing the defined constant values for B<REGISTRATION_PPORT>

and B<RESPONDER_PPORT> from their defaults will require source code changes

to programs that interact with this keyserver (which includes the

B<Devel::Scooby>, B<Mobile::Executive> and B<Mobile::Location> modules).

So, don’t change these constant values unless you really have to.

0653 3. The "HTTP-based Monitoring Service" runs on port HTTP_PORT (which

defaults to 8080), and provides a mechanism to remotely check the status

of the keyserver via the world-wide-web. The LOGFILE can be viewed and

(optionally) reset via the web-based interface. Resetting the LOGFILE

results in an archived copy of the LOGFILE-to-date being created on the

keyserver’s local storage.

0654 =head1 ENVIRONMENT

0655 It is assumed that the MySQL RDBMS is executing on the same machine as this

keyserver. Here’s a quick list of MySQL-specific instructions for creating

a database and table required to support this program:

0656 =over 4

0657 mysql -u root -p

0658 mysql> create database SCOOBY;

0659 mysql> use mysql;

0660 mysql> grant all on SCOOBY.* to perlagent identified by ’passwordhere’;

0661 mysql> quit

0662 mysql -u perlagent -p SCOOBY < create_publics.sql

0663 =back

0664 If you use a different user-id/password combo to that shown above, be sure

to change the two constants defined at the start of the source code

(KEYDB_USER and KEYDB_PASS).

0665 where the B<create_publics.sql> disk-file contains:

0666 =over 4

0667 create table publics

0668 (

0669 ip_address varchar (16) not null,

0670 protocol_port varchar (6) not null,

0671 public_key text not null

0672)

0673 =back

0674 =head1 FILES

0675 A configuration file, called ".keyserverrc", needs to exist in the same

directory as this keyserver. Its contents detail the IP address and

protocol port numbers that connections will be allowed from. Typically, it

will look something like this:

0676 =over 4

0677 127.0.0.1:*

41

0678 192.168.22.14:*

0679 =back

0680 which allows any connection (on any port) from both 127.0.0.1 and

192.168.22.14. Note that (at the moment), specifying a protocol port number

in place of "*" has no effect. Connection from all ports on the specified

IP address are allowed. This will change in a future release.

0681 When first executed, this keyserver creates two disk-files:

0682 =over 4

0683 "LOCALHOST.RESPONDER_PPORT.public", and

0684 "LOCALHOST.RESPONDER_PPORT.private".

0685 =back

0686 These contain this keyserver’s RSA public and private keys, respectively.

The public key is also added to the MySQL database.

0687 DO NOT remove these files from the directory that runs this keyserver.

0688 DO NOT edit these files, either.

0689 The keyserver also logs all communication with it (in a disk-file called

"keyserver.log"). The contents of this log can be viewed (and archives of

it created) using the "HTTP-based Monitoring Service" (see DESCRIPTION).

0690 =head1 FOUR IMPORTANT CONSTANTS

0691 Near the start of the keyserver’s source code, four constants are defined

as follows:

0692 =over 4

0693 use constant KEYSRV_PASSWD => ’keyserver’;

0694 use constant KEY_SIZE => 1024;

0695 use constant ENABLED_LOGGING => 1;

0696 use constant ENABLED_PRINTS => 1;

0697 =back

0698 Change the first two constants to values of your choosing to set the

password (KEYSRV_PASSWD) and the key size (KEY_SIZE) to use during the

PK+/PK- generation. Note: the larger the key size, the stronger the

encryption, but, the slower this software will run. The default value for

KEY_SIZE should suffice for most situations.

0699 Set ENABLED_LOGGING to 0 switch off disk-based logging and the HTTP-based

Monitoring Service.

0700 Set ENABLED_PRINTS to 0 to disable the the display of status messages on

STDOUT.

0701 =head1 SEE ALSO

0702 The B<Devel::Scooby>, B<Mobile::Executive> and B<Mobile::Location> modules.

0703 The following CPAN modules are assumed to be installed: B<Net::MySQL> and

B<Crypt::RSA>. The HTTP server requires B<HTTP::Daemon> and

42

B<HTTP::Status>, which are installed as part of the B<libwww-perl> library

(also available on CPAN).

0704 The Scooby Website: B<http://glasnost.itcarlow.ie/~scooby/>.

0705 =head1 AUTHOR

0706 Paul Barry, Institute of Technology, Carlow in Ireland,

B<paul.barry@itcarlow.ie>, B<http://glasnost.itcarlow.ie/~barryp/>.

0707 =head1 COPYRIGHT

0708 Copyright (c) 2003, Paul Barry. All Rights Reserved.

0709 This module is free software. It may be used, redistributed and/or modified

under the same terms as Perl itself.

43

1.7 Executive.pm Source Code

0710 package Mobile::Executive;

0711 # Executive.pm - the mobile agent client support code.

0712 #

0713 # Author: Paul Barry, paul.barry@itcarlow.ie

0714 # Create: October 2002.

0715 # Update: April 2003 - version 1.x series supports relocation.

0716 # May 2003 - version 2.x adds support for authentication and

0717 # encryption using Crypt::RSA.

0718 require Exporter;

0719 our $VERSION = 2.03;

0720 our @ISA = qw(Exporter);

0721 # We export all the symbols declared in this module by default.

0722 our @EXPORT = qw(

0723 relocate

0724 $absolute_fn

0725 $public_key

0726 $private_key

0727);

0728 our @EXPORT_OK = qw(

0729);

0730

0731 our %EXPORT_TAGS = (

0732);

0733

0734 use constant KEY_ID => ’Mobile::Executive ID’;

0735 use constant KEY_SIZE => 1024;

0736 use constant KEY_PASS => ’Mobile::Executive PASS’;

0737 use constant TRUE => 1;

0738 use constant FALSE => 0;

0739 BEGIN {

0740 # This BEGIN block is executed as soon as the module is "used".

0741 # We determine the absolute path and filename of the program using

0742 # this module. This is important, as the Devel::Scooby.pm module needs

0743 # this information during a relocate. Note the use of ’our’.

0744 # We also generate a PK+ and PK- for "users" of this module.

0745 use Crypt::RSA; # Provides authentication and encryption services.

0746 use File::Spec; # Provides filename and path services.

0747 our $absolute_fn = File::Spec->rel2abs(File::Spec->curdir) . ’/’ . $0;

0748 my $rsa = new Crypt::RSA;

0749 our ($public_key, $private_key) =

0750 $rsa->keygen(

0751 Identity => KEY_ID . "$$" . "$0",

0752 Size => KEY_SIZE,

0753 Password => KEY_PASS . "$0" . "$$",

44

0754 Verbosity => FALSE

0755) or die $rsa->errstr, "\n";

0756 }

0757 sub relocate {

0758 # The relocate subroutine.

0759 #

0760 # IN: The IP name/address and protocol port number of a Location to

0761 # relocate to.

0762 #

0763 # OUT: nothing.

0764 my $ip_address = shift;

0765 my $protocol_port = shift;

0766 # Does nothing - just a place holder. The Devel::Scooby module

0767 # runs its own relocate code as part of its "sub" invocation. That is,

0768 # a call to this relocate results in the Devel::Scooby running its own

0769 # version of "relocate".

0770 return;

0771 }

0772 1; # As it is required by Perl.

0773 ##

0774 # Documentation starts here.

0775 ##

0776 =pod

0777 =head1 NAME

0778 "Mobile::Executive" - used to signal the intention to relocate a Scooby

mobile agent from the current Location to some other (possibly remote)

Location.

0779 =head1 VERSION

0780 2.03 (version 1.0x never released).

0781 =head1 SYNOPSIS

0782 use Mobile::Executive;

0783 ...

0784 relocate($remote_location, $remote_port);

0785 =head1 DESCRIPTION

0786 Part of the Scooby mobile agent machinery, the B<Mobile::Executive> module

provides a means to signal the agents intention to relocate to another

Location. Typical usage is as shown in the B<SYNOPSIS> section above.

Assuming an instance of B<Mobile::Location> is executing on

B<$remote_location> at protocol port number B<$remote_port>, the agent

stops executing on the current Location, relocates to the remote Location,

then continues to execute from the statement immediately AFTER the

B<relocate> statement.

0787 Note: a functioning keyserver is required.

45

0788 =head1 Overview

0789 The only subroutine provided to programs that use this module is:

0790 =over 4

0791 relocate

0792 =back

0793 and it takes two parameters: a IP address (or name) of the remote Location,

and the protocol port number that the Location is listening on.

0794 =head1 Internal methods/subroutines

0795 A Perl B<BEGIN> block determines the absolute path to the mobile agents

source code file, and puts it into the B<$absolute_fn> scalar (which is

automatically exported). This block also generates a PK+/PK- pairing (in

B<$public_key> and B<$private_key>) and exports both values (as they are

used by B<Devel::Scooby>).

0796 =head1 RULES FOR WRITING MOBILE AGENTS

0797 There used to be loads, but now there is only one. Read the

B<Scooby Guide>, available on-line at:

B<http://glasnost.itcarlow.ie/~scooby/guide.html>.

0798 =head1 SEE ALSO

0799 The B<Mobile::Location> class (for creating Locations), and the

B<Devel::Scooby> module (for running mobile agents).

0800 The Scooby Website: B<http://glasnost.itcarlow.ie/~scooby/>.

0801 =head1 AUTHOR

0802 Paul Barry, Institute of Technology, Carlow in Ireland,

B<paul.barry@itcarlow.ie>, B<http://glasnost.itcarlow.ie/~barryp/>.

0803 =head1 COPYRIGHT

0804 Copyright (c) 2003, Paul Barry. All Rights Reserved.

0805 This module is free software. It may be used, redistributed and/or

modified under the same terms as Perl itself.

46

1.8 Scooby.pm Source Code

0806 package Devel::Scooby;

0807 # Scooby.pm - a relocation mechanism for use with the Mobile::Location

0808 # and Mobile::Executive modules.

0809 #

0810 # Author: Paul Barry, paul.barry@itcarlow.ie

0811 # Create: October 2002.

0812 # Update: April/May 2003 - Version 4.x series.

0813 #

0814 # Notes: This code takes advantage of the CPAN modules

0815 # PadWalker and Storable (with a little help from the

0816 # Data::Dumper module when it comes to Objects). The Crypt::RSA

0817 # module provides PK+/PK- support.

0818 #

0819 # Version 1.x supported relocating simple Perl code.

0820 # Version 2.x supported relocating SCALARs, ARRAYs, and

0821 # HASHes and references to same.

0822 # Version 3.x supported relocating Perl OO objects. Note

0823 # that this will only occur after Scooby has contacted

0824 # the receiving Location and determined that any

0825 # required classes exist on the remote Perl system.

0826 # Version 4.x supports authenticated relocation using Crypt::RSA,

0827 # as well as encryption of the mobile agent source code.

0828 #

0829 our $VERSION = 4.12;

0830 # The "constant.pm" module does not want to work with the debugger

0831 # mechanism, so "our" variables are used instead.

0832 our $SCOOBY_CONFIG_FILE = "$ENV{’HOME’}/.scoobyrc";

0833 our $SIGNATURE_DELIMITER = "\n--end-sig--\n";

0834 our $ALARM_WAIT = 30;

0835 our $LOCALHOST = ’127.0.0.1’;

0836 our $RESPONDER_PPORT = ’30001’;

0837 our $REGISTER_PPORT = ’30002’;

0838 our $MAX_RECV_LEN = 65536;

0839 our $TRUE = 1;

0840 our $FALSE = 0;

0841 ##

0842 # The Scooby Debugger starts here.

0843 ##

0844 {

0845 package DB; # Remember: Scooby is a DEBUGGER.

0846

0847 our ($package, $file, $line); # XXXXX: Note these are ’global’.

0848 sub DB {

0849 # Called for every line in the program that can be breakpointed.

0850 #

0851 # IN: nothing.

47

0852 #

0853 # OUT: nothing.

0854 ($package, $file, $line) = caller; # XXXXX: Writing to globals!

0855 }

0856 sub sub {

0857 # Called before every subroutine call in the program.

0858 #

0859 # IN: nothing. Although "$sub" is set to the name of the

0860 # subroutine that was just called (thanks to Perl’s debugging

0861 # mechanisms).

0862 #

0863 # OUT: nothing.

0864 if ($sub =~ /^Mobile::Executive::relocate$/)

0865 {

0866 use Socket; # Functional interface to

Socket API.

0867 use Storable qw(freeze thaw); # Provides a persistence

mechanism.

0868 use PadWalker qw(peek_my); # Provides access to all

lexically scoped variables.

0869 use Crypt::RSA; # Provides authentication and

0870 # encryption services.

0871 my $remote = shift;

0872 # Next two lines turn the IP name into a dotted-decimal.

0873 my $tmp = gethostbyname($remote) or inet_aton($remote);

0874 $remote = inet_ntoa($tmp);

0875 my $remote_port = shift;

0876 my $filename_mem = $file;

0877 my $linenum_mem = ($line + 1);

0878 my $stringified;

0879

0880 # We first determine the list of lexicals in the caller.

0881 my $them = peek_my(0);

0882 # Then we turn the list of lexicals into "Storable" output.

0883 my $str = freeze(\%{ $them });

0884 # Then we turn the thawed output back into Perl code. This

0885 # code is referred to as the "lexical init" code.

0886 $stringified = _storable_decode(

0887 $remote,

0888 $remote_port,

0889 thaw($str)

0890);

0891 # Determine the KEYSERVER address from the .scoobyrc file.

0892 open KEYFILE, "$SCOOBY_CONFIG_FILE"

48

0893 or die "Scooby: unable to access ~/.scoobyrc. Does it

exist?\n";

0894 my $keyline = <KEYFILE>;

0895 close KEYFILE;

0896 # Note: format of ’rc’ file is very strict. No spaces!

0897 $keyline =~ /^KEYSERVER=(.+)/;

0898 my $key_server = $1;

0899 # Now that we know the address of the key server, we can

0900 # request the PK+ of the key server and the next location.

0901 _get_store_pkplus($key_server, $LOCALHOST, $RESPONDER_PPORT);

0902 _get_store_pkplus($key_server, $remote, $remote_port);

0903 open RELOCATE_FILE, "$Mobile::Executive::absolute_fn"

0904 or die "Scooby: Unable to open file for relocation: $!.\n";

0905 # Dump the current state of the agent to a temporary disk-file

0906 # so that we can encrypt it with the next Location’s PK+.

0907 my $tmp_filename = "$0.$$.temporary.tmp";

0908 open TMP_FILE, ">$tmp_filename"

0909 or die "Scooby: could not write to temporary encryption

file: $!.\n";

0910 my $line_count = 0;

0911 # Write the agent’s source code one line at a time to the

temporary file.

0912 while (my $line2send = <RELOCATE_FILE>)

0913 {

0914 ++$line_count;

0915 print TMP_FILE $line2send;

0916 # Check to see if we need to insert the "lexical init" code.

0917 if ($line_count == ($linenum_mem-1))

0918 {

0919 print TMP_FILE $stringified if defined($stringified);

0920 }

0921 }

0922 close RELOCATE_FILE;

0923 close TMP_FILE;

0924 # The agent source code (which has mutated) is now in

"$tmp_filename".

0925 open TOENCRYPT_FILE, "$tmp_filename"

0926 or die "Scooby: temporary encryption file could not be

opened: $!.\n";

0927 my @entire_toencrypt = <TOENCRYPT_FILE>;

49

0928 close TOENCRYPT_FILE;

0929 # We are now done with the temporary file, so we can remove it

0930 # from the local storage.

0931 unlink $tmp_filename;

0932 my $message = "@entire_toencrypt\n";

0933 my $public_key_filename = "$remote.$remote_port.public";

0934 my $public_key = new Crypt::RSA::Key::Public(

0935 Filename => $public_key_filename

0936);

0937 my $rsa = new Crypt::RSA;

0938 # Encrypt the mutated agent using the PK+ of the next Location.

0939 my $cyphertext = $rsa->encrypt(

0940 Message => $message,

0941 Key => $public_key,

0942 Armour => $TRUE

0943) or die $rsa->errstr, "\n";

0944 # Use the PK- of this Mobile::Executive invocation to

0945 # sign the encrypted mobile agent.

0946 my $cypher_signature = $rsa->sign(

0947 Message => $cyphertext,

0948 Key =>

$Mobile::Executive::private_key,

0949 Armour => $TRUE

0950) or die $rsa->errstr, "\n";

0951 # Networking code to send agent to the server starts here.

0952 my $trans_serv = getprotobyname(’tcp’);

0953 my $remote_host = gethostbyname($remote) or

inet_aton($remote);

0954 my $destination = sockaddr_in($remote_port, $remote_host);

0955 socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)

0956 or die "Scooby: socket creation failed: $!.\n";

0957 connect(TCP_SOCK, $destination)

0958 or die "Scooby: connect to remote system failed: $!.\n";

0959 # Turn on auto-flushing.

0960 my $previous = select TCP_SOCK;

0961 $| = 1;

0962 select $previous;

0963 # Send the filename of the agent to the remote Location.

0964 print TCP_SOCK $filename_mem . "\n";

0965 # Send the line# for the next executable line to the Location.

0966 print TCP_SOCK $linenum_mem . "\n";

0967 # We need to work out the port that this client is using

50

"locally".

0968 # The Location will use this protocol port number to query the

0969 # keyserver for the just-about-to-be-sent public key.

0970 my ($local_pport, $local_ip) =

sockaddr_in(getsockname(TCP_SOCK));

0971 # Prior to sending the signature and cyphertext to the next

0972 # Location, we need to update the keyserver with the appropriate

0973 # PK+ so that the next Location can verify the signature. We

0974 # write the PK+ to a disk-file, then read it back in, as this is

0975 # the format that the keyserver expects to receive it in.

0976 $Mobile::Executive::public_key->write(

0977 Filename => "$0.$$.$local_pport.public"

0978);

0979 open LOCAL_KEYFILE, "$0.$$.$local_pport.public"

0980 or die "Scooby: the local public key file does not

exist: $!.\n";

0981 my @entire_local_file = <LOCAL_KEYFILE>;

0982 close LOCAL_KEYFILE;

0983 # We have no further need for the public key file, so remove it.

0984 unlink "$0.$$.$local_pport.public";

0985 # Send the "local" protocol port number and PK+ to the

keyserver.

0986 my $keysock_obj = IO::Socket::INET->new(PeerAddr =>

$key_server,

0987 PeerPort =>

$REGISTER_PPORT,

0988 Proto => ’tcp’);

0989 if (!defined($keysock_obj))

0990 {

0991 die "Scooby: could not create socket object to key

server: $!.\n";

0992 }

0993 print $keysock_obj "$local_pport\n";

0994 print $keysock_obj @entire_local_file;

0995 $keysock_obj->close;

0996 # ACK that the just inserted PK+ is in the keyserver.

0997 _wait_for_pkplus_confirm($key_server, inet_ntoa($local_ip),

$local_pport);

0998 # Send the signature to the next Location.

0999 print TCP_SOCK "$cypher_signature" . $SIGNATURE_DELIMITER;

1000 # Send the encoded cyphertext to the next Location.

1001 print TCP_SOCK $cyphertext;

51

1002 close TCP_SOCK

1003 or warn "Scooby: close failed: $!.\n";

1004 exit; # We are done on this Location, having just relocated

1005 # to another. This is why we "exit" at this time.

1006 }

1007 # Call the original subroutine with parameters (if there was any).

1008 # We only get to here if there’s no request for relocation.

1009 if (defined @_)

1010 {

1011 &$sub(@_);

1012 }

1013 else

1014 {

1015 &$sub;

1016 }

1017 }

1018 ##

1019 # Scooby support routines follow.

1020 ##

1021 sub _wait_for_pkplus_confirm {

1022 # Contacts the key server and requests the PK+ for a specified

1023 # IP address/port combo. Keeps asking for the PK+ until such time

1024 # as the PK+ is ACKed by the key server.

1025 #

1026 # IN: The IP name/address of the key server.

1027 # The IP address to use when requesting a PK+ from key server.

1028 # The protocol port to use when requesting a PK+.

1029 #

1030 # OUT: nothing.

1031

1032 use IO::Socket; # Provides OO interface to Socket API.

1033

1034 my $server = shift;

1035 my $lookup = shift;

1036 my $port = shift;

1037

1038 my $sig_ack = $FALSE;

1039 while ($sig_ack == $FALSE)

1040 {

1041 # Opens a socket object to the keyserver.

1042 my $key_sock = IO::Socket::INET->new(

1043 PeerAddr => $server,

1044 PeerPort =>

$RESPONDER_PPORT,

1045 Proto => ’tcp’

1046);

1047 if (!defined($key_sock))

1048 {

1049 die "Scooby: could not create key server socket object:

$!.\n";

1050 }

1051

52

1052 # Send the lookup details to the keyserver.

1053 print $key_sock "$lookup\n";

1054 print $key_sock $port;

1055

1056 # We are done writing, so half close the socket.

1057 $key_sock->shutdown(1);

1058

1059 my $data = ’’;

1060 # Read the entire response from the keyserver.

1061

1062 while (my $chunk = <$key_sock>)

1063 {

1064 $data = $data . $chunk;

1065 }

1066

1067 $key_sock->close;

1068

1069 # This splits the signature and data on the SIGNATURE_DELIMITER

1070 # pattern as used by the keyserver.

1071 (my $key_sig, $data) = split /\n--end-sig--\n/, $data;

1072

1073 if ($key_sig eq "NOSIG")

1074 {

1075 $sig_ack = $FALSE;

1076 }

1077 else

1078 {

1079 $sig_ack = $TRUE;

1080 }

1081 }

1082 }

1083 sub _get_store_pkplus {

1084 # Contacts the key server and requests the PK+ for a specified

1085 # IP address/port combo. Stores the PK+ in the named disk-file.

1086 #

1087 # IN: The IP name/address of the key server.

1088 # The IP address to use when requesting a PK+ from key server.

1089 # The protocol port to use when requesting a PK+.

1090 #

1091 # OUT: nothing.

1092 #

1093 # This code is an extension of the "_wait_for_pkplus_confirm" code.

1094

1095 use Crypt::RSA; # Provides authentication and encryption services.

1096 use IO::Socket; # Provides OO interface to Socket API.

1097

1098 my $server = shift;

1099 my $lookup = shift;

1100 my $port = shift;

1101

1102 my $key_sock = IO::Socket::INET->new(

1103 PeerAddr => $server,

1104 PeerPort => $RESPONDER_PPORT,

1105 Proto => ’tcp’

1106);

53

1107 if (!defined($key_sock))

1108 {

1109 die "Scooby: could not create key server socket object: $!.\n";

1110 }

1111

1112 print $key_sock "$lookup\n";

1113 print $key_sock $port;

1114

1115 # We are done writing, so half close the socket.

1116 $key_sock->shutdown(1);

1117

1118 my $data = ’’;

1119

1120 while (my $chunk = <$key_sock>)

1121 {

1122 $data = $data . $chunk;

1123 }

1124

1125 $key_sock->close;

1126

1127 # This splits the signature and data on the SIGNATURE_DELIMITER

1128 # pattern as used by the keyserver.

1129 (my $key_sig, $data) = split /\n--end-sig--\n/, $data;

1130 if ($key_sig eq "NOSIG")

1131 {

1132 die "Scooby: no signature found: aborting.\n";

1133 }

1134 elsif ($key_sig eq "SELFSIG")

1135 {

1136 my $lf = "$lookup.$port.public"; # Location PK+ filename.

1137 open KEYFILE, ">$lf"

1138 or die "Scooby: could not create key file: $!.\n";

1139

1140 print KEYFILE $data;

1141

1142 close KEYFILE;

1143 }

1144 else

1145 {

1146 my $ksf = "$LOCALHOST.$RESPONDER_PPORT.public";

1147 my $key_server_pkplus = new Crypt::RSA::Key::Public(

1148 Filename => $ksf

1149);

1150

1151 my $rsa = new Crypt::RSA;

1152

1153 my $verify = $rsa->verify(

1154 Message => $data,

1155 Signature => "$key_sig",

1156 Key => $key_server_pkplus,

1157 Armour => $TRUE

1158);

1159

1160 if (!$verify)

1161 {

1162 die "Scooby: signature for next location does not verify:

aborting.\n";

54

1163 }

1164 else

1165 {

1166 open KEYFILE, ">$lookup.$port.public"

1167 or die "Scooby: could not create key file: $!.\n";

1168

1169 print KEYFILE $data;

1170

1171 close KEYFILE;

1172 }

1173 }

1174 }

1175

1176 sub _check_modules_on_remote {

1177 # Contacts the remote Location, sends the list of required modules,

1178 # waits for a response, then returns it to the caller.

1179 #

1180 # IN: The IP name (or address) of the remote Location.

1181 # The protocol port number of the remote Location.

1182 # The list of modules to look for.

1183 #

1184 # OUT: The message received from the server.

1185

1186 my $remote = shift;

1187 my $remote_port = shift;

1188 my @tocheck = @_;

1189

1190 use Socket; # Functional interface to Socket API.

1191

1192 my $trans_serv = getprotobyname(’tcp’);

1193 my $remote_host = gethostbyname($remote) or inet_aton($remote);

1194

1195 # Note: the server listens at Port+1.

1196 my $destination = sockaddr_in($remote_port+1, $remote_host);

1197

1198 socket(CHECK_MOD_SOCK, PF_INET, SOCK_STREAM, $trans_serv)

1199 or die "Scooby: socket creation failed: $!.\n";

1200 my $con_ok = connect(CHECK_MOD_SOCK, $destination)

1201 or die "Scooby: connect to remote system failed: $!.\n";

1202

1203 # Send the list of modules to check.

1204 send(CHECK_MOD_SOCK, join(’ ’, @tocheck), 0)

1205 or warn "Scooby: problem with send: $!.\n";

1206

1207 shutdown(CHECK_MOD_SOCK, 1); # Close the socket for writing.

1208

1209 my $remote_response = ’’;

1210

1211 # Add a signal handler to execute when the alarm sounds

(or expires).

1212 $SIG{ALRM} = sub { die "no remote module check\n"; };

1213

1214 alarm($ALARM_WAIT);

1215

1216 # We wait for up to ALARM_WAIT seconds for a response from the

Location.

1217 eval {

55

1218 recv(CHECK_MOD_SOCK, $remote_response, $MAX_RECV_LEN, 0);

1219 alarm(0); # Cancel the alarm, we do not need it now.

1220 };

1221

1222 close CHECK_MOD_SOCK

1223 or warn "Scooby: close failed: $!.\n";

1224

1225 # Process the timeout if it happened. Die if we see some message

1226 # other than the one we expect.

1227 if ($@)

1228 {

1229 die "Scooby: $@\n" unless $@ =~ /no remote module check/;

1230

1231 warn "Scooby: not able to check existence of remote modules.\n";

1232 }

1233

1234 return $remote_response;

1235 }

1236

1237 sub _storable_decode {

1238 # Called immediately after the lexical variables are stringified

1239 # in order to return the "Storable" output to its original form.

1240 #

1241 # IN: The IP name (or address) of the remote Location.

1242 # The protocol port number of the remote Location.

1243 # The "thawed" output from the Storable::thaw method.

1244 #

1245 # OUT: The stringified representation of the Perl code that can be

1246 # executed to reinitialize the relocated variables.

1247 #

1248 # NOTE: This code also checks to see if any required modules exist

1249 # on the remote Location. It will "die" if some are missing.

1250

1251 my $remote = shift;

1252 my $remote_port = shift;

1253 my $thawed = shift;

1254

1255 my %for_refs;

1256 my $stringified = ’’;

1257 my @required_classes = ();

1258

1259 # The lexicals are processed TWICE, as it is not possible to

1260 # handle REFerences with a single pass over "$thawed".

1261

1262 # Process the lexicals once, for SCALARs, ARRAYs and HASHes.

1263 #

1264 # Note: we need to remember the ’memory address’ of each variable,

1265 # so we check them against any REFerences in the second pass.

1266 #

1267 # The generated code is indented by four spaces.

1268 while (my ($name, $value) = each (%{ $thawed }))

1269 {

1270 if (ref($value) eq ’SCALAR’)

1271 {

1272 $for_refs{ $value } = $name;

1273 # We do NOT want to enclose SCALAR numbers in quotes!

56

1274 if ($$value =~ /[^0123456789.]+/)

1275 {

1276 $stringified .= " $name = \"$$value\";\n";

1277 }

1278 else

1279 {

1280 $stringified .= " $name = $$value;\n";

1281 }

1282 }

1283 if (ref($value) eq ’ARRAY’)

1284 {

1285 $for_refs{ $value } = $name;

1286 $stringified .= " $name = qw(@$value);\n";

1287 }

1288 if (ref($value) eq ’HASH’)

1289 {

1290 $for_refs{ $value } = $name;

1291 $stringified .= " $name = (\n";

1292 while (my ($h_name, $h_value) = each (%{ $value }))

1293 {

1294 $stringified .= " \"$h_name\" => \"$h_value\",\n"

1295 }

1296 $stringified .= ");\n";

1297 }

1298 }

1299

1300 # Second pass: process the lexicals again, this time for REFs.

1301 while (my ($name, $value) = each (%{ $thawed }))

1302 {

1303 # Deal with references to Perl OO objects.

1304 if (ref($value) eq ’REF’ && !defined($for_refs{ $$value }))

1305 {

1306 push @required_classes, ref($$value);

1307

1308 use Data::Dumper;

1309

1310 my $string = Dumper($value);

1311

1312 # Make sure the appropriate Class is used.

1313 $stringified .= " use " . ref($$value) . ";\n\n";

1314

1315 # Replace Data::Dumper’s generated $VARn with correct name.

1316 $string =~ s/^\$VAR\d+ = \\//;

1317

1318 # Add the code to bless the object to the stringified code.

1319 $stringified .= " $name = $string\n";

1320 }

1321

1322 # Deal with references to SCALARs, ARRAYs and HASHes.

1323 if (ref($value) eq ’REF’ && defined($for_refs{ $$value }))

1324 {

1325 $stringified .= " $name = \\$for_refs{ $$value };\n";

1326 }

57

1327 }

1328

1329 # Check to see if any required modules exist on the remote Location.

1330 # The list provided is calculated as a result of processing any

1331 # references to object instances.

1332 if (@required_classes)

1333 {

1334 my $message = _check_modules_on_remote(

1335 $remote,

1336 $remote_port,

1337 @required_classes

1338);

1339

1340 if ($message =~ /^NOK/)

1341 {

1342 $message =~ s/^NOK: //;

1343 die "Required modules missing on remote: $message.\n";

1344 }

1345 elsif ($message !~ /^OK/)

1346 {

1347 warn "Something strange has happened: $message.\n";

1348 die "Is the remote Location ready?\n";

1349 }

1350 }

1351

1352 # Assuming we haven’t died, return the Perl code to the caller.

1353 return $stringified;

1354 }

1355 } # End of DB package.

1356 1; # Evaluate true as last statement of this package (required by Perl).

1357 ##

1358 # Documentation starts here.

1359 ##

1360 =pod

1361 =head1 NAME

1362 "Scooby" - the internal machinery that works with B<Mobile::Location> and

B<Mobile::Executive> to provide a mobile agent execution and location

environment for the Perl Programming Language.

1363 =head1 VERSION

1364 4.0x (versions 1.x and 2.x were never released; version 3.x did not support

encryption and authentication).

1365 =head1 SYNOPSIS

1366 perl -d:Scooby mobile_agent

1367 =head1 DESCRIPTION

1368 This is an internal module that is not designed to be "used" directly by a

program. Assuming a mobile agent called B<multiwho> exists (that "uses"

58

the B<Mobile::Executive> module), this module can be used to execute it,

as follows:

1369 =over 4

1370 perl -d:Scooby multiwho

1371 =back

1372 The B<-d> switch to C<perl> invokes Scooby as a debugger. Unlike a

traditional debugger that expects to interact with a human, Scooby runs

automatically. It NEVER interacts with a human, it interacts with the

mobile agent machinery.

1373 Scooby can be used to relocate Perl source code which contains the

following:

1374 =over 4

1375 SCALARs (both numbers and strings).

1376 An ARRAY of SCALARs (known as a simple ARRAY).

1377 A HASH of SCALARs (known as a simple HASH).

1378 References to SCALARs.

1379 References to a simple ARRAY.

1380 References to a simple HASH.

1381 Objects.

1382 References to objects are B<not> supported and are in no way guaranteed to

behave the way you expect them to after relocation (even though they do

relocate).

1383 The relocation of more complex data structures is B<not> supported at this

time (refer to the TO DO LIST section, below).

1384 =back

1385 =head1 Internal methods/subroutines

1386 =over 4

1387 B<DB::DB> - called for every executable statement contained in the mobile

agent source code file.

1388 B<DB::sub> - called for every subroutine call contained in the mobile agent

source code file.

1389 B<_DB::storable_decode> - takes the stringified output from B<Storable>’s

B<thaw> subroutine and turns it back into Perl code (with a little help

from Data::Dumper for objects).

1390 B<DB::_check_modules_on_remote> - checks to see if a list of modules/classes

"used" within the mobile agent actually exist on the remote Location’s Perl

system.

1391 B<DB::_get_store_pkplus> - contacts the key server and requests a PK+, then

stores the PK+ in a named disk-file.

59

1392 B<DB::_wait_for_pkplus_confirm> - repeatedly contacts the key server until

requested PK+ is returned (i.e., ACKed).

1393 =back

1394 =head1 ENVIRONMENT

1395 This module must be installed in your Perl system’s B<Devel/> directory.

This module will only work on an operating system that supports the Perl

modules listed in the SEE ALSO section, below. (To date, I’ve only tested

it on various Linux distributions).

1396 =head1 TO DO LIST

1397 Loads. The biggest item on the list would be to enhance Scooby to allow it

to handle more complex data structures, such as ARRAYs of HASHes and HASHes

of ARRAYs, etc., etc.

1398 My initial plan was to allow for the automatic relocation of open

disk-files. However, on reflection, I decided not to do this at this time,

but may return to the idea at some stage in the future.

1399 The current implementation checks to see if "used" classes are available on

the next Location before attempting relocation, but does not check to see

if "used" modules are available. It would be nice if it did.

1400 It would also be nice to incorporate an updated B<Class::Tom> (by James

Duncan) to handle the relocation of objects to a Location without the need

to have the module exist on the remote Location. On my system (Linux), the

most recent B<Class::Tom> generates compile/run-time errors.

1401 =head1 SEE ALSO

1402 The B<Mobile::Executive> module and the B<Mobile::Location> class.

Internally, this module uses the following CPAN modules: B<PadWalker> and

B<Storable>, in addition to the standard B<Data::Dumper> module. The

B<Crypt::RSA> modules provides encryption and authentication services.

1403 The Scooby Website: B<http://glasnost.itcarlow.ie/~scooby/>.

1404 =head1 AUTHOR

1405 Paul Barry, Institute of Technology, Carlow in Ireland,

B<paul.barry@itcarlow.ie>, B<http://glasnost.itcarlow.ie/~barryp/>.

1406 =head1 COPYRIGHT

1407 Copyright (c) 2003, Paul Barry. All Rights Reserved.

1408 This module is free software. It may be used, redistributed and/or

modified under the same terms as Perl itself.

60

1.9 Location.pm Source Code

1409 package Mobile::Location;

1410 # Location.pm - the mobile agent environment location class.

1411 #

1412 # Author: Paul Barry, paul.barry@itcarlow.ie

1413 # Create: March 2003.

1414 # Update: April 2003 - changed to IO::Socket for agent receipt/processing

1415 # due to "fork" strangeness on regular sockets.

1416 # May 2003 - added support for authentication and encryption.

1417 # - added the web-based monitoring service.

1418 #

1419 # Notes: Version 1.x - unsafe, totally trusting Locations (never released).

1420 # Version 2.x - added support to the Location for executing mobile

1421 # agents within a restricted Opcode environment.

1422 # Version 3.x - adds support for authentication and encryption. This

1423 # code assumes that a functioning keyserver is running.

1424 # Version 4.x - embeds a web-server to allow for remote monitoring

1425 # via the world-wide-web.

1426 use strict;

1427 use Crypt::RSA; # Provides authentication and encryption services.

1428 use IO::Socket; # OO interface to Socket API.

1429 use Socket; # Procedural interface to Socket API.

1430 use Sys::Hostname; # Provides means to determine name of current machine.

1431 use HTTP::Daemon; # Provides a basic HTTP server.

1432 use HTTP::Status; # Provides support for HTTP status messages.

1433 use POSIX ’WNOHANG’; # Provides support for POSIX signals.

1434 # Add a signal handler to process and deal with "zombies".

1435 $SIG{CHLD} = sub { while (waitpid(-1, WNOHANG) > 0) { }; };

1436 our $VERSION = 4.02;

1437 use constant TRUE => 1;

1438 use constant FALSE => 0;

1439 use constant RUN_LOCATION_DIR => "Location";

1440 use constant KEY_SIZE => 1024;

1441 use constant RESPONDER_PPORT => ’30001’;

1442 use constant REGISTRATION_PPORT => ’30002’;

1443 use constant SCOOBY_CONFIG_FILE => "$ENV{’HOME’}/.scoobyrc";

1444 use constant HTML_DEFAULT_PAGE => "index.html";

1445 use constant HTTP_PORT => 8080;

1446 use constant LOGFILE => ’location.log’;

1447 use constant VISIT_SCOOBY => ’Visit the <a href="http://glasnost

.itcarlow.ie/~scooby/">Scooby Website

at IT Carlow.<p>’;

1448 our $_PWD = ’’; # This ’global’ contains the current working directory

1449 # for the Location instance determined during construction.

1450 ##

61

1451 # The class constructor is in "new".

1452 ##

1453 sub new {

1454 # The Mobile::Location constructor.

1455 #

1456 # IN: Receives a series of optional name/value pairings.

1457 # Port - Protocol port value to accept connections from.

1458 # Default value for Port is ’2001’.

1459 # Debug - set to 1 for STDERR status messages.

1460 # Default value for Debug is 0 (off).

1461 # Log - set to 1 to enable logging of agents to disk.

1462 # Default value for Log is 0 (off).

1463 # Ops - a set of Opcodes or Opcode tags, which are

1464 # added to Scooby’s ALLOWED ops when executing

1465 # mobile agents.

1466 # Web - set to 1 to enable the logging mechanism and the

1467 # creation of a HTTP-based Monitoring Service. The

1468 # default is 1 (i.e., ON).

1469 #

1470 # OUT: Returns a blessed reference to a Mobile::Location object.

1471 my ($class, %arguments) = @_;

1472 my $self = bless {}, $class;

1473 $self->{ Port } = $arguments{ Port } || 2001;

1474 $self->{ Debug } = $arguments{ Debug } || FALSE;

1475 $self->{ Log } = $arguments{ Log } || FALSE;

1476 $self->{ Ops } = $arguments{ Ops } || ’’;

1477 $self->{ Web } = $arguments{ Web } || TRUE;

1478 # Untaint the PATH by setting it to something really limited.

1479 $ENV{’PATH’} = "/bin:/usr/bin";

1480 # This next line is part of the standard Perl technique. See ’perlsec’.

1481 delete @ENV{ ’IFS’, ’CDPATH’, ’ENV’, ’BASH_ENV’ };

1482

1483 $_PWD = ‘pwd‘; # XXXXXX: Writing to global! This is tainted.

1484 $_PWD =~ /^([-\@\/\w_.]+)$/; # So, we untaint it, using a regex.

1485 $_PWD = $1;

1486 # Disallow if running this Location as ’root’.

1487 die "Location running as ROOT. This is NOT secure (nor allowed)!"

1488 unless $> and $^O ne ’VMS’;

1489 # Work out and remember the IP address of the computer running this

Location.

1490 my $host = gethostbyname(hostname) or inet_aton(hostname);

1491 $self->{ Host } = inet_ntoa($host);

1492 # Generate and remember a password to use with the PK- and PK+.

1493 $self->{ Password } = $0 . $$. ’_Location’;

1494 # NOTE: A second server is spawned at this stage to handle any

1495 # requests from an agent re: the availability of any

62

1496 # required modules within the Perl system running this Location.

1497 # See the _check_modules_on_remote subroutine from Devel::Scooby,

1498 # as well as the _spawn_network_service and _check_for_modules

1499 # subroutines, below.

1500 _spawn_network_service($self->{ Port }+1);

1501 # Create the HTTP-based Monitoring Service.

1502 $self->_spawn_web_monitoring_service;

1503 return $self;

1504 }

1505 ##

1506 # Methods and support subroutines.

1507 ##

1508 sub _logger {

1509 # This small routine quickly writes a message to the LOGFILE. Note

1510 # that every line written to the LOGFILE is timestamped.

1511 #

1512 # IN: a message to log.

1513 #

1514 # OUT: nothing.

1515 my $self = shift;

1516 # Open the LOGFILE for append >>.

1517 open ML_LOGFILE, ">>" . LOGFILE

1518 or die "Mobile::Location: unable to append to LOGFILE.\n";

1519 print ML_LOGFILE scalar localtime, ": @_\n";

1520 close ML_LOGFILE;

1521 }

1522 sub _logger2 {

1523 # This small routine quickly writes a message to the LOGFILE. Note

1524 # that every line written to the LOGFILE is timestamped. This code is

1525 # the same as "_logger", but for the fact that the location of the

1526 # LOGFILE is one-level-up in the directory hierarchy.

1527 #

1528 # IN: a message to log.

1529 #

1530 # OUT: nothing.

1531 my $self = shift;

1532 # Open the LOGFILE (which is one-level-up) for append >>.

1533 open ML_LOGFILE, ">>../" . LOGFILE

1534 or die "Mobile::Location: unable to append to LOGFILE.\n";

1535 print ML_LOGFILE scalar localtime, ": @_\n";

1536 close ML_LOGFILE;

1537 }

63

1538 sub _build_index_dot_html {

1539 # Builds the INDEX.HTML file (used by _start_web_service).

1540 #

1541 # IN: nothing.

1542 #

1543 # OUT: nothing (although "index.html" is created).

1544 my $self = shift;

1545 open HTMLFILE, ">index.html"

1546 or die "Mobile::Executive: index.html cannot be written to: $!.\n";

1547 print HTMLFILE<<end_html;

1548 <HTML>

1549 <HEAD>

1550 <TITLE>Welcome to the Location Web-Based Monitoring Service.</TITLE>

1551 </HEAD>

1552 <BODY>

1553 <h2>Welcome to the Location Web-Based Monitoring Service</h2>

1554 end_html

1555 print HTMLFILE "Location executing on: " . hostname . ".<p>";

1556 print HTMLFILE "Location date/time: " . localtime() .

1557 ". Running on port: " .

1558 $self->{ Port } . ".<p>";

1559 print HTMLFILE<<end_html;

1560 Click here to reset the log.

1561 <h2>Logging Details</h2>

1562 <pre>

1563 end_html

1564 open HTTP_LOGFILE, LOGFILE

1565 or die "Mobile::Location: the LOGFILE is missing - aborting.\n";

1566 while (my $logline = <HTTP_LOGFILE>)

1567 {

1568 print HTMLFILE "$logline";

1569 }

1570 close HTTP_LOGFILE;

1571 print HTMLFILE<<end_html;

1572 </pre>

1573 end_html

1574 print HTMLFILE VISIT_SCOOBY;

1575 print HTMLFILE<<end_html;

1576 </BODY>

1577 </HTML>

1578 end_html

1579 close HTMLFILE;

1580 }

64

1581 sub _build_clearlog_dot_html {

1582 # Builds the CLEARLOG.HTML file (used by _start_web_service).

1583 #

1584 # IN: the name of the just-created backup file.

1585 #

1586 # OUT: nothing (although "clearlog.html" is created).

1587 my $self = shift;

1588 my $backup_log = shift;

1589 open CLEARLOG_HTML, ">clearlog.html"

1590 or die "Mobile::Executive: clearlog.html cannot be written to:

$!.\n";

1591 print CLEARLOG_HTML<<end_html;

1592 <HTML>

1593 <HEAD>

1594 <TITLE>Location Logfile Reset.</TITLE>

1595 </HEAD>

1596 <BODY>

1597 <h2>Location Logfile Reset</h2>

1598 The previous logfile has been archived as: $backup_log<p>

1599 Return to this Location’s main page.<p>

1600 end_html

1601 print CLEARLOG_HTML VISIT_SCOOBY;

1602 print CLEARLOG_HTML<<end_html;

1603 </BODY>

1604 <HTML>

1605 end_html

1606 close CLEARLOG_HTML;

1607 }

1608 sub _start_web_service {

1609 # Starts a small web server running on port HTTP_PORT. Provides for

1610 # some simple monitoring of the Location.

1611 #

1612 # IN: nothing.

1613 #

1614 # OUT: nothing.

1615 my $self = shift;

1616 my $httpd = HTTP::Daemon->new(LocalPort => HTTP_PORT,

1617 Reuse => 1)

1618 or die "Mobile::Location: could not create HTTP daemon on " .

1619 HTTP_PORT . ".\n";

1620 $self->_logger("Starting web service on port:", HTTP_PORT)

if $self->{ Web };

1621 while (my $http_client = $httpd->accept)

1622 {

1623 if (my $service = $http_client->get_request)

1624 {

65

1625 my $request = $service->uri->path;

1626 if ($service->method eq ’GET’)

1627 {

1628 my $resource;

1629

1630 if ($request eq "/" || $request eq "/index.html")

1631 {

1632 $resource = HTML_DEFAULT_PAGE;

1633 $self->_build_index_dot_html;

1634 $http_client->send_file_response($resource);

1635 }

1636 elsif ($request eq "/clearlog.html")

1637 {

1638 # Create a name for the backup log.

1639 my $backup_log = "Mobile::Location." . localtime() .

1640 "." . $$. ".log";

1641 # Make the backup, delete the LOGFILE, then recreate it.

1642 system("cp", LOGFILE, $backup_log);

1643 unlink LOGFILE;

1644 $self->_logger("Mobile::Location: log reset.")

if $self->{ Web };

1645 $self->_build_clearlog_dot_html($backup_log);

1646 $http_client->send_file_response("clearlog.html");

1647 }

1648 else

1649 {

1650 $http_client->send_error(RC_NOT_FOUND);

1651 }

1652 }

1653 else

1654 {

1655 $http_client->send_error(RC_METHOD_NOT_ALLOWED);

1656 }

1657 }

1658 }

1659 continue

1660 {

1661 $http_client->close;

1662 undef($http_client);

1663 }

1664 }

1665 sub _register_with_keyserver {

1666 # Create a PK+ and PK- for this server, storing the PK+ in the

1667 # keyserver, and retaining the PK- in memory (as part of the objects

1668 # state). Note: a new key-pair is generated with each invocation.

1669 #

1670 # IN: nothing. (Other than the object reference, of course).

1671 #

1672 # OUT: nothing.

1673

1674 my $self = shift;

66

1675 # Generate the PK+ and PK-. Store the PK- in the object’s state.

1676 my $rsa = new Crypt::RSA;

1677 my $id = $self->{ Host } . ":" . $self->{ Port } . " Location";

1678 warn "This location is generating a PK+/PK- pairing.\n" if $self->{ Debug };

1679 my ($public, $private) =

1680 $rsa->keygen(

1681 Identity => $id,

1682 Size => KEY_SIZE,

1683 Password => $self->{ Password },

1684 Verbosity => FALSE

1685) or die $rsa->errstr, "\n";

1686 warn "Pairing Generated.\n" if $self->{ Debug };

1687 $self->_logger("Location’s PK+/PK- pairing generated.")

if $self->{ Web };

1688 # Remember the PK- in the object’s state.

1689 $self->{ PrivateKey } = $private;

1690 # Write the PK+ to an appropriately named disk-file.

1691 my $pub_fn = $self->{ Host } . "." . $self->{ Port } . ".public";

1692 $self->_logger("Writing PK+ to: $pub_fn.") if $self->{ Web };

1693 $public->write(Filename => $pub_fn);

1694 # Determine the KEYSERVER address from the .scoobyrc file.

1695 open KEYFILE, SCOOBY_CONFIG_FILE

1696 or die "Mobile::Location: unable to access ~/.scoobyrc.

Does it exist?\n";

1697 my $keyline = <KEYFILE>;

1698 close KEYFILE;

1699 # Note: format of ’rc’ file is very strict. No spaces!

1700 $keyline =~ /^KEYSERVER=(.+)/;

1701 $self->{ KeyServer } = $1;

1702 # Now that we know the address of the keyserver, we can register the

PK+ of this

1703 # Location with the keyserver. We read the PK+ from the just-created

disk-file.

1704 $self->_logger("Determined keyserver address as:",

$self->{ KeyServer }) if $self->{ Web };

1705 open KEYFILE, "$pub_fn"

1706 or die "Mobile::Location: KEYFILE does not exist: $!.\n";

1707 my @entire_keyfile = <KEYFILE>;

67

1708 close KEYFILE;

1709 my $keysock_obj = IO::Socket::INET->new(PeerAddr

=> $self->{ KeyServer },

1710 PeerPort

=> REGISTRATION_PPORT,

1711 Proto => ’tcp’);

1712 if (!defined($keysock_obj))

1713 {

1714 die "Mobile::Location: could not create socket object to key

server: $!.\n";

1715 }

1716 print $keysock_obj $self->{ Port }, "\n";

1717 print $keysock_obj @entire_keyfile;

1718 $keysock_obj->close;

1719 $self->_logger("Location registered with keyserver.")

if $self->{ Web };

1720 }

1721 sub start_concurrent {

1722 # Start a passive server/location that executes concurrently. For

1723 # each relocation request, a child process is spawned to process it.

1724 #

1725 # IN: nothing.

1726 #

1727 # OUT: nothing.

1728 #

1729 # This method is never returned from. Remember: servers are PERMANENT.

1730

1731 my $self = shift;

1732 my $listening_socket = IO::Socket::INET->new(LocalPort

=> $self->{ Port },

1733 Listen => SOMAXCONN,

1734 Proto => ’tcp’,

1735 Reuse => TRUE);

1736 if (!defined($listening_socket))

1737 {

1738 die "Mobile::Location: unable to bind to listening socket: $!.\n";

1739 }

1740 $self->_logger("Location (concurrent) starting on port:",

$self->{ Port }) if $self->{ Web };

1741 warn "Location starting up on port: " . $self->{ Port } . ".\n"

if $self->{ Debug };

1742

1743 $self->_register_with_keyserver;

1744

1745 while (TRUE) # i.e., FOREVER, as servers are permanent.

1746 {

1747 next unless my $from_socket = $listening_socket->accept;

1748 next if my $child = fork;

1749 if ($child == FALSE)

1750 {

68

1751 $self->_logger("Servicing client from:",

1752 inet_ntoa($from_socket->peeraddr))

if $self->{ Web };

1753 $listening_socket->close;

1754 $self->_service_client($from_socket);

1755 exit FALSE;

1756 }

1757 $from_socket->close;

1758 }

1759 }

1760

1761 sub start_sequential {

1762 # Start a passive server/location that executes sequentially.

1763 #

1764 # IN: nothing.

1765 #

1766 # OUT: nothing.

1767 #

1768 # This method is never returned from. Remember: servers are PERMANENT.

1769 my $self = shift;

1770 my $listening_socket = IO::Socket::INET->new(LocalPort

=> $self->{ Port },

1771 Listen => SOMAXCONN,

1772 Proto => ’tcp’,

1773 Reuse => TRUE);

1774 if (!defined($listening_socket))

1775 {

1776 die "Mobile::Location: unable to bind to listening socket: $!.\n";

1777 }

1778 $self->_logger("Location (sequential) starting on port:",

$self->{ Port }) if $self->{ Web };

1779 warn "Location starting up on port: " . $self->{ Port } . ".\n"

if $self->{ Debug };

1780

1781 $self->_register_with_keyserver;

1782

1783 # Servers are PERMANENT.

1784 while (TRUE)

1785 {

1786 next unless my $from_socket = $listening_socket->accept;

1787 $self->_logger("Servicing client from:",

1788 inet_ntoa($from_socket->peeraddr))

if $self->{ Web };

1789 $self->_service_client($from_socket);

1790 }

1791 }

1792 sub _service_client {

1793 # Service the receipt (and re-execution) of a mobile agent on

1794 # this Location.

69

1795 #

1796 # IN: A socket object to communicate with/on.

1797 #

1798 # OUT: nothing.

1799 my $self = shift;

1800 my $socket_object = shift;

1801 my $tmp_fn = <$socket_object>; # The received filename.

1802 chomp($tmp_fn);

1803 # We just want the name-part, so a little regex magic gives it to us.

1804 $tmp_fn = (split /\//, $tmp_fn)[-1];

1805 my $tmp_linenum = <$socket_object>; # The received line number.

1806 chomp($tmp_linenum);

1807 my $data = ’’;

1808 # Receive the signature and mobile agent code.

1809 while (my $chunk = <$socket_object>)

1810 {

1811 $data = $data . $chunk;

1812 }

1813 # We need to split out the signature from the $data so that we can

verify it.

1814 (my $agent_signature, $data) = split /\n--end-sig--\n/, $data;

1815 # We need to verify the signature. To do this, we need to retrieve

1816 # the appropriate PK+ from the keyserver.

1817 my $key_srv_sock = IO::Socket::INET->new(

1818 PeerAddr

=> $self->{ KeyServer },

1819 PeerPort => RESPONDER_PPORT,

1820 Proto => ’tcp’

1821);

1822 if (!defined($key_srv_sock))

1823 {

1824 $self->_logger("Unable to create a verify socket.")

if $self->{ Web };

1825

1826 die "Mobile::Location: unable to create a verify socket to

keyserver: $!.\n";

1827 }

1828 my $agent_ip = $socket_object->peerhost;

1829 my $agent_port = $socket_object->peerport;

1830 print $key_srv_sock "$agent_ip\n";

1831 print $key_srv_sock $agent_port;

1832 $key_srv_sock->shutdown(1);

1833 my $verify_data = ’’;

1834

70

1835 while (my $verify_chunk = <$key_srv_sock>)

1836 {

1837 $verify_data = $verify_data . $verify_chunk;

1838 }

1839

1840 $key_srv_sock->close;

1841

1842 # This splits the signature and data on the SIGNATURE_DELIMITER

1843 # pattern as used by the keyserver.

1844 (my $verify_signature, $verify_data) = split /\n--end-sig--\n/,

$verify_data;

1845 if ($verify_signature eq "NOSIG")

1846 {

1847 $self->_logger("WARNING: The keyserver returned NOSIG.")

if $self->{ Web };

1848

1849 # We need to abort, as the keyserver does not have the requested

1850 # signature. This is bad.

1851 $socket_object->close;

1852 exit 0; # Short circuit.

1853 }

1854 open VERIFY_FILE, ">$agent_ip.$agent_port.public"

1855 or die "Mobile::Location: could not create verify key file: $!\n";

1856 print VERIFY_FILE $verify_data;

1857 close VERIFY_FILE;

1858 my $agent_pkplus = new Crypt::RSA::Key::Public(

1859 Filename => "$agent_ip.$agent_port.public"

1860);

1861 my $rsa = new Crypt::RSA;

1862 my $verify = $rsa->verify(

1863 Message => $data,

1864 Signature => $agent_signature,

1865 Key => $agent_pkplus,

1866 Armour => TRUE

1867);

1868 if (!$verify)

1869 {

1870 $self->_logger("WARNING: could not verify signature for:",

1871 inet_ntoa($socket_object->peeraddr),

1872 "using $agent_ip/$agent_port.")

if $self->{ Web };

1873 die "Mobile::Location: could not verify signature of received

mobile agent. Aborting ... \n";

1874 }

1875 $self->_logger("Signature verified for $agent_ip/$agent_port.")

if $self->{ Web };

1876 # Remove the agents PK+ keyfile, as we no longer need it.

71

1877 unlink "$agent_ip.$agent_port.public";

1878 # At this stage, we have a mobile agent that is encrypted using the PK+

1879 # of this Location, and we have verified the signature to be correct.

1880 # We use this Location’s PK- to decrypt it.

1881 my $plaintext = $rsa->decrypt(

1882 Cyphertext => $data,

1883 Key => $self->{ PrivateKey },

1884 Armour => TRUE

1885);

1886 if (!defined($plaintext))

1887 {

1888 $self->_logger("WARNING: unable to decrypt Cyphertext for:

$agent_ip/$agent_port.") if $self->{ Web };

1889 die "Mobile::Location: decryption errors - aborting.\n";

1890 }

1891 # We have a plaintext representation of the mobile agent, which

1892 # we turn back into an array of lines.

1893 my @entire_thing = split /\n/, $plaintext;

1894 # Add a newline to each of the "lines" in @entire_thing.

1895 foreach my $line (@entire_thing)

1896 {

1897 $line = $line . "\n";

1898 }

1899 # Ensure the Location is in the correct STARTUP directory.

1900 chdir $_PWD;

1901 # We enter the run-time directory if it exists.

1902 if (-e RUN_LOCATION_DIR)

1903 {

1904 chdir(RUN_LOCATION_DIR);

1905 }

1906 else # Or, if it does NOT exist, we create it then change into it.

1907 {

1908 mkdir(RUN_LOCATION_DIR);

1909 chdir(RUN_LOCATION_DIR);

1910 }

1911 # As we are now in the run-time directory, we continue with the

relocation.

1912 if ($self->{ Log })

1913 {

1914 my $logname = "last_agent_" . $$. ".log"; # Note use of PID.

1915

1916 # Put a copy of the mobile agent into the log file.

1917 my $logOK = open AGENTLOGFILE, ">$logname"

1918 or warn "Mobile::Location: could not open log file: $!.\n";

1919 print AGENTLOGFILE @entire_thing if defined $logOK;

72

1920 close AGENTLOGFILE if defined $logOK;

1921 $self->_logger2("Received agent logged to: $logname.")

if $self->{ Web };

1922 }

1923 # Untaint the filename received from Scooby, using a regex.

1924 $tmp_fn =~ /^([-\@\w_.]+)$/;

1925 $tmp_fn = $1;

1926

1927 # Create the "mutated" agent on the local storage.

1928 open FILETOCHECK, ">$tmp_fn"

1929 or die "Location::Mobile: could not create agent disk-file: $!:";

1930

1931 my $label = _generate_label($tmp_fn, $tmp_linenum);

1932

1933 # Start processing the agent one "line" at a time.

1934 my $chunk = shift @entire_thing;

1935 # Print the "magic" first line.

1936 print FILETOCHECK $chunk;

1937 # # Add the Opcode mask to the code.

1938 #

1939 # print FILETOCHECK "\nuse ops qw(" .

1940 #

1941 # # Basic operation mask - relocating to a single Location.

1942 #

1943 # ’aassign add aelem av2arylen ’ .

1944 # ’backtick ’ .

1945 # ’caller chdir chomp chop closedir concat const ’ .

1946 # ’defined die ’ .

1947 # ’enter entereval enteriter entersub eq ’ .

1948 # ’ftdir fteexec ftewrite ’ .

1949 # ’gelem goto grepstart gv ’ .

1950 # ’helem ’ .

1951 # ’iter ’ .

1952 # ’join ’ .

1953 # ’last leaveeval leaveloop leavesub lstat ’ .

1954 # ’method method_named ’ .

1955 # ’ne negate next not null ’ .

1956 # ’open_dir ’ .

1957 # ’padany pop push pushmark ’ .

1958 # ’readdir refgen require return rv2av rv2cv rv2gv rv2hv rv2sv ’ .

1959 # ’sassign scalar seq shift sne split stat stringify stub substr ’ .

1960 # ’undef unshift unstack ’ .

1961 #

1962 # # Relocating to multiple Locations (requires more operations).

1963 # # Most of these are needed by Carp.pm, which is used by IO::Socket

1964 # # (among other modules).

1965 #

1966 # ’anonhash anonlist ’ .

1967 # ’exists ’ .

1968 # ’keys ’ .

1969 # ’gt ’ .

1970 # ’length lt ’ .

1971 # ’mapstart ’ .

1972 # ’ord ’ .

73

1973 # ’postinc predec preinc ’ .

1974 # ’redo ref ’ .

1975 # ’sprintf subtract ’ .

1976 # ’wantarray ’ .

1977 #

1978 # # Adding the ops required by Crypt::RSA and its support modules.

1979 #

1980 # ’anoncode ’ .

1981 # ’bless bit_and bit_or bit_xor ’ .

1982 # ’chr close complement ’ .

1983 # ’divide delete dofile ’ .

1984 # ’each enterwrite eof ’ .

1985 # ’fcntl fileno flip flop formline fteread ftfile ftis ftsize ’ .

1986 # ’ge getc ’ .

1987 # ’hex ’

1988 # ’int index ioctl ’ .

1989 # ’lc le left_shift lslice ’

1990 # ’modulo multiply ’

1991 # ’oct open ’

1992 # ’pack padsv postdec pow print prtf ’

1993 # ’quotemeta ’ .

1994 # ’rand read readline repeat reverse regcreset ’ .

1995 # ’select splice srand sysread syswrite ’

1996 # ’tell tie trans truncate ’

1997 # ’uc unpack ’

1998 # ’values vec ’

1999 # ’warn ’

2000 # ’xor ’

2001 #

2002 # $self->{ Ops } . ");\n\n"; # Forces safety.

2003 #

2004 # Insert the GOTO label line.

2005 print FILETOCHECK "goto $label;\n";

2006 # We re-initialize the line counter.

2007 my $line_counter = 2;

2008 # Process the rest of the agent, one "line" at a time.

2009 while ($chunk = shift @entire_thing)

2010 {

2011 if ($line_counter == $tmp_linenum) # We are at the ’next’ line.

2012 {

2013 # Insert a ’label’ statement before the next instruction.

2014 print FILETOCHECK "$label:\n1;\n";

2015 print FILETOCHECK "use Mobile::Executive;\n\n";

2016 }

2017 print FILETOCHECK $chunk;

2018 $line_counter++;

2019 }

2020

2021 close FILETOCHECK;

2022 # Note: The agent now exists on the local run-time storage of this Location.

2023

2024 $self->_logger2("Received $tmp_fn from", $socket_object->peerhost,

2025 " next line: $tmp_linenum.") if $self->{ Web };

74

2026 warn "Received $tmp_fn from ",

2027 $socket_object->peerhost,

2028 "; next line: $tmp_linenum.\n" if $self->{ Debug };

2029 # Construct the command-line that will continue to execute the agent.

2030 my $cmd = "perl -d:Scooby " . "$tmp_fn";

2031

2032 # Close the socket as we are now finished with it.

2033 close $socket_object

2034 or warn "Mobile::Location: close failed: $!.\n";

2035 # Continue to execute the agent at this location.

2036 warn "Continuing to execute agent: $cmd.\n" if $self->{ Debug };

2037

2038 $self->_logger2("Continuing to execute mobile agent: $cmd.")

if $self->{ Web };

2039 my $results = qx($cmd);

2040

2041 print "$results" if $results ne ’’;

2042 }

2043 sub _spawn_web_monitoring_service {

2044 # Creates a subprocess to run the web-based monitoring service.

2045 #

2046 # IN: nothing.

2047 #

2048 # OUT: nothing.

2049 my $self = shift;

2050 my $child_pid = fork;

2051 die "No spawned web-based monitoring service: $!.\n" unless

defined($child_pid);

2052 if ($child_pid == FALSE)

2053 {

2054 # This is the CHILD code.

2055 $self->_start_web_service if $self->{ Web };

2056 exit 0;

2057 }

2058 }

2059 ##

2060 # These are not methods, they’re support subroutines.

2061 ##

2062 sub _generate_label {

2063 # Generate a unique label string.

2064 #

2065 # IN: A filename and a line number.

2066 # Note: These values are combined with the time to produce a

2067 # random (and hopefully unique) label.

75

2068 #

2069 # OUT: An appropriately formatted label.

2070 my $fn = shift;

2071 my $ln = shift;

2072 my $tm = time;

2073 # Remove any unwanted characters from the filename.

2074 $fn =~ s/[^a-zA-Z0-9]//;

2075 return (’LABEL_’ . $fn . $ln . $tm);

2076 }

2077 sub _check_for_modules {

2078 # Given a list of module classes, check to see if they exist within this

2079 # Location’s Perl environment.

2080 #

2081 # IN: A list of fully-qualified (one or more) module names.

2082 # A "fully-qualified module name" is "Devel::Scooby", as

2083 # opposed to just "Scooby".

2084 #

2085 # OUT: A list of modules NOT found. An empty list signals SUCCESS.

2086 my @mods_to_check = @_; # Taken from IN.

2087 my @list_of_not_found = (); # Will be used as OUT.

2088 foreach my $mod (@mods_to_check)

2089 {

2090 # Untaint the $mod values prior to their use, using a regex.

2091 $mod =~ /^([\w\d:_]+)$/;

2092 $mod = $1;

2093 eval "require $mod;";

2094 if ($@)

2095 {

2096 # The module does not exist within this Perl!!

2097 push @list_of_not_found, $mod;

2098 }

2099 }

2100 return @list_of_not_found;

2101 }

2102 sub _spawn_network_service {

2103 # Spawn a sub-process, running at protocol port number

"$self->{ Port }+1"

2104 # to respond to an agent’s query re: required classes.

2105 #

2106 # IN: The protocol port to start the service on.

2107 #

2108 # OUT: nothing.

2109 my $port = shift;

76

2110 # Untaint the value for $port, as it can be initialized from

2111 # the command-line, and is therefore TAINTED.

2112 $port =~ /^(\d+)$/;

2113 $port = $1;

2114 my $child_pid = fork;

2115 die "No spawned network service: $!.\n" unless defined($child_pid);

2116 # This child code never ends, as servers are PERMANENT.

2117 if ($child_pid == FALSE)

2118 {

2119 # This is the CHILD code, which creates a server on "Port+1" and

2120 # listens for requests from a remote mobile agent.

2121 my $trans_serv = getprotobyname(’tcp’);

2122 my $local_addr = sockaddr_in($port, INADDR_ANY);

2123 socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)

2124 or die "Mobile::Location: socket creation failed: $!.\n";

2125 setsockopt(TCP_SOCK, SOL_SOCKET, SO_REUSEADDR, 1)

2126 or warn "Mobile::Location: could not set socket option: $!.\n";

2127 bind(TCP_SOCK, $local_addr)

2128 or die "Mobile::Location: bind to address failed: $!.\n";

2129 listen(TCP_SOCK, SOMAXCONN)

2130 or die "Mobile::Location: listen couldn’t: $!.\n";

2131 my $from_who;

2132 while ($from_who = accept(CHECK_MOD_SOCK, TCP_SOCK))

2133 {

2134 # Switch on AUTO-FLUSHING.

2135 my $previous = select CHECK_MOD_SOCK;

2136 $| = 1;

2137 select $previous;

2138 my $data = ’’;

2139

2140 # Get the list of modules from the other Location.

2141 while (my $chunk = <CHECK_MOD_SOCK>)

2142 {

2143 $data = $data . $chunk;

2144 }

2145 my @modules = split / /, $data;

2146 my @list = _check_for_modules(@modules);

2147 if (@list)

2148 {

2149 print CHECK_MOD_SOCK "NOK: @list";

2150 }

2151 else

2152 {

2153 print CHECK_MOD_SOCK "OK";

2154 }

2155 close CHECK_MOD_SOCK

77

2156 or warn "Mobile::Location: close failed: $!.\n";

2157 }

2158 close TCP_SOCK; # This code may never be reached. It only

2159 # executes if the call to "accept" fails.

2160 }

2161 # This is the parent process code. That is, the value of

2162 # $child_pid is defined and is greater than 0.

2163 }

2164 1; # As it is required by Perl.

2165 ##

2166 # Documentation starts here.

2167 ##

2168 =pod

2169 =head1 NAME

2170 "Mobile::Location" - a class that provides for the creation of Scooby

mobile agent environments (aka Location, Site or Place).

2171 =head1 VERSION

2172 4.0x (the v1.0x, v2.0x and v3.0x series were never released).

2173 =head1 SYNOPSIS

2174 use Mobile::Location;

2175 my $location = Mobile::Location->new;

2176 $location->start_sequential;

2177 or

2178 $location->start_concurrent;

2179 =head1 SOME IMPORTANT NOTES FOR LOCATION WRITERS

2180 1. Never, ever run a Location as ’root’. If you do, this module will die.

Running as ’root’ is a serious security risk, as a mobile agent is foreign

code that you are trusting to execute in a non-threatening way on your

computer. (Can you spell the word ’v’, ’i’, ’r’, ’u’, ’s’?!?)

2181 2. The B<Mobile::Location> class executes mobile agents within a restricted

environment. See the B<Ops> argument to the B<new> method, below, for more

details.

2182 3. Never, ever run a Location on the same machine that is acting as your

keyserver (it’s a really bad idea, so don’t even think about it).

2183 =head1 DESCRIPTION

2184 Part of the Scooby mobile agent machinery, the B<Mobile::Location> class

provides a convenient abstraction of a mobile agent environment. Typical

usage is as shown in the B<SYNOPSIS> section above. This class allows for

the creation of a passive, TCP-based mobile agent Location.

78

2185 =head1 Overview

2186 Simply create an object of type B<Mobile::Location> with the B<new> method.

To start a sequential server, use the B<start_sequential> method. To start

a concurrent server, use the B<start_concurrent> method.

2187 =head1 Construction and initialization

2188 Create a new instance of the B<Mobile::Location> object by calling the

B<new> method:

2189 =over 4

2190 my $location = Mobile::Location->new;

2191 =back

2192 Optional named parameters (with default values) are:

2193 =over 4

2194 B<Debug (0)> - set to 1 to receive STDERR status messages from the object.

2195 B<Port (2001)> - sets the protocol port number to accept connections on.

2196 B<Log (0)> - set to 1 to instruct the Location to log the received mobile

agent to disk prior to performing any mutation. The name of the logged

agent is "last_agent_PID.log", where PID is the process identifier of the

Location. On sequential Locations, the PID is always the same value for

each received agent. On concurrent Locations, the PID is the PID of the

child process that services the relocation/re-execution, so it is always

different for each received agent (so watch your disk space). It is often

useful to switch this option on (by setting Log to 1) when debugging. Note

that the received mobile agent persists on the Location’s local disk storage.

2197 B<Ops (’’)> - add a list of Opcodes to the Opcode mask that is in effect

when the mobile agent executes. Study the standard B<Opcode> and B<Ops>

modules for details on Opcodes and how they are set. One way to secure

your Location against attack is to ensure that the Opcodes in effect while

a mobile agent executes are "safe". This is NOT an easy task, as protecting

the mobile agent environment from malicious mobile agents is never easy.

Note that the default set of Opcodes in effect are enough to allow the

relocation mechanism to execute. B<NOTE>: if the mobile agent uses a

operation not allowed by the Opcode mask, it is killed and stops executing.

The Location continues to execute, and waits passively for the next mobile

agent to arrive. The default set of enabled Opcodes is restrictive.

Provide a space-delimited list of Opcodes to this argument to add to the

list of allowed opcodes. NOTE: this functionality is currently B<disabled>

due to conflicts/incompatibilities with the current version of Crypt::RSA

(version 1.50).

2198 B<Web (1)> - turns on the HTTP-based Monitoring Service running on port 8080

(HTTP_PORT), thus enabling remote monitoring of the Locations current

status. It also logs interactions with this Location into ’location.log’

(LOGFILE). Set to 0 to disable this behaviour.

2199 =back

2200 Note that any received mobile agent executes in a directory called

"Location", which will be created (if needs be) in the directory that houses

this Location. Any "logs" are also created in the "Location" directory.

79

2201 A constructor example is:

2202 =over 4

2203 my $place = Mobile::Location->new(Port => 5555, Debug => 1);

2204 =back

2205 creates an object that will display all STDERR status messages, and use

protocol port number 5555 for connections. Logging of received agents to

disk is off. The standard Opcode mask is in effect. And logging to disk

is on, as is the HTTP server.

2206 When the Location is constructed with B<new>, a second network service is

created, running at protocol port number B<Port+1>. In the example above,

this second network service would run at protocol port number 5556. When

sent the names of a set of Perl classes (e.g., Data::Dumper, HTTP::Request,

Net::SNMP and the like), this service checks to see if the classes are

available to the locally installed Perl installation. This allows

B<Devel::Scooby> to determine whether or not relocation is worthwhile prior

to an attempted relocation. The B<Devel::Scooby> module tries to

determines the list of classes used by any mobile agent and communicates

with this second network service "in the background". This all happens

automatically, so the mobile agent programmer does not need to worry about

it, as B<Devel::Scooby> only complains when a module does not exist on a

remote Location. That said, the administrator of the Location does need

to be aware of this second network service. To confirm that the Location

and the second network service are up-and-running use the B<netstat -an>

command-line utility (on Linux). The two "listening" services should appear

in netstat’s output.

2207 Note: If a Location crashes (or is killed), the second network service can

sometimes keeps running. After all, it is a separate process (albeit a

child of the original). Trying to restart the Location results in an

"bind to address failed" error message. Use the B<ps -aux> command to

identify the Perl interpreter that is executing and kill it with

B<kill -9 pid>, where B<pid> is the process ID of the child process’s Perl

interpreter.

2208 =head1 Class and object methods

2209 =over 4

2210 =item B<start_concurrent>

2211 Start the location as a passive server, which operates concurrently. Once

connected to a client, the server forks another process to receive and

continue executing a mobile agent. This is the preferred method to use

when there exists the potential to have an agent execute for a long period

of time.

2212 =item B<start_sequential>

2213 Start the location as a passive server, which operates sequentially. Once

connected to a client, the server sequentially processes the receipt and

continued executing of a mobile agent. This is OK if the agent is quick

and not processor intensive. If the agent has the potential to execute

for a long period of time, use the B<start_concurrent> method instead.

This may also be of use within environments that place a restriction on the

use of B<fork>.

2214 =back

80

2215 =head1 Internal methods/subroutines

2216 The following list of subroutines are used within the class to provide

support services to the class methods. These subroutines should not be

invoked through the object (and in some cases, cannot be invoked through

the object).

2217 =over 4

2218 =item B<_generate_label>

2219 Takes a filename and line number, then combines them with the current time

to produce a random, unique label.

2220 =item B<_check_for_modules>

2221 Given a list of module names, checks to see if the Location’s Perl system

has the module installed or not.

2222 =item B<_spawn_network_service>

2223 Used by the B<new> constructor to spawn the Port+1 network service which

listens for a list of modules names from a mobile agent, then checks for

their existence within the locally installed Perl system.

2224 =item B<_service_client>

2225 Given a socket object (and the instances init data), service the relocation

of a Scooby mobile agent.

2226 =item B<_register_with_keyserver>

2227 Creates a PK+ and PK- value for the server, storing the PK+ in the keyserver,

and the PK- in the object’s state.

2228 =item B<_logger> and B<_logger2>

2229 Logs a message to the LOGFILE.

2230 =item B<_build_index_dot_html>

2231 Builds the INDEX.HTML page for use by the HTTP-based Monitoring Service.

2232 =item B<_build_clearlog_dot_html>

2233 Builds the CLEARLOG.HTML page for use by the HTTP-based Monitoring Service.

2234 =item B<_start_web_service>

2235 Starts a small web server running at port 8080 (HTTP_PORT), and uses the

two "_build_*" routines just described.

2236 =item B<_spawn_web_monitoring_service>

2237 Creates a subprocess and starts the web server.

2238 =back

2239 =head1 SEE ALSO

2240 The B<Mobile::Executive> module (for creating mobile agents), as well as

81

B<Devel::Scooby> (for running mobile agents).

2241 The Scooby Website: B<http://glasnost.itcarlow.ie/~scooby/>.

2242 =head1 AUTHOR

2243 Paul Barry, Institute of Technology, Carlow in Ireland,

B<paul.barry@itcarlow.ie>, B<http://glasnost.itcarlow.ie/~barrypi/>.

2244 =head1 COPYRIGHT

2245 Copyright (c) 2003, Paul Barry. All Rights Reserved.

2246 This module is free software. It may be used, redistributed and/or

modified under the same terms as Perl itself.

82

