Imstitidid Teicnealaiochta Cheatharlach

LIl || INSTITUTE of
""" TECHNOLOGY
Y CARLOW

At the Heart of South Leinster

User Manual
17/04/2013

Daniel Connor

C00137906

Table of Contents

Table of Contents
Introduction
Installation
Limitations
Types
Flow of Control Statements
Examples
Example A
Example B
Example C
Example D
JSSeek output:
Usage
API
Command Line Interface

https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.5l31dp5b7jq3
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.2y8tpfdks4a
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.stikb3uvais4
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.sczcdwjpct5w
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.6bs6s6byxnmc
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.s9fmxmjxckeg
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.g8v745ml4o5g
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.ofrgfdxupvp8
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.qkwzkkpqh1tj
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.78c92byzx5is
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.f687xxmyl9j
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.teglfao0h5np
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.7bqoyqw7qm9x
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.fwvfkbh224px
https://docs.google.com/document/d/soT7U6ruGOu4GKYkBIDFhwQ/headless/print#heading=h.2axfs168f2yf

Introduction

JSSeek is a tool designed to find errors in Javascript code using symbolic execution. It analyses
a function and if errors are found, sample inputs are given to show the error. It uses esprima.js
as a Javascript parser and ptc-solver as a number constraint solver. It also uses a binding to
ECLiPSe-CLP from Javascript through a C++ interface.

Installation

To instal JSSeek, the 32-bit version of node.js must first be installed from the http://nodejs.org.
The 32-bit version is required because it must be linked with ECLiIPSe-CLP, the environment
that ptc-solver runs in, which is included in node-eclipse-clp. To build the binding from javascript
to C, Visual Studio is required. All other dependencies will be downloaded automatically.

Once you have extracted the contents of the source code, open a cmd window in the directory
run: npm install -g.

You can install JSSeek from the npm directory by running: npm install -g jsseek

The -g flag specifies that jsseek should be installed globally in the path. If you do not want this to
be the case it can be omitted.

Limitations

JSSeek has quite a few limitations as it is only a proof of concept and only covers a subset of
Javascript.

Types

JSSeek supports the following types: Null, Undefined, Number, Boolean, Object. It does not
support the String type as it does not have a solver that supports constraints. Constant strings
can be used in conjunction with the typeof operator for example. e.g. typeof obj == “object

Object properties are can only be the string representation of any of the types supported by
JSSeek.

Flow of Control Statements
The only flow of control statements that are supported are if and else statements.

http://www.google.com/url?q=http%3A%2F%2Fnodejs.org&sa=D&sntz=1&usg=AFQjCNE5H97CEhQ8UntOSxkVBNR5W9np_w

Examples

Example A

This is the simplest example the error generator should be able to find an error in. If the obj is null
or undefined, trying to access a property will throw a TypeError.
function example(obj, a) {

if(obj[a]) {
// do something

}

}

JSSeek output
error:2:5 obj can be null or undefined

Example B

Objects in javascript are often used as namespaces to store configuration values and functions
for easy access. In this example, even though the obj is defined within the function(l cannot
currently handle global objects), a property name is passed as an argument which specifies a
property of obj which should be called as a function. obj contains properties that are obviously
not functions. When a value for prop is passed that does not correspond to a function, a
TypeError will be thrown.

function example(prop, arg) {

var obj = {
a: {},
b: {},
c: null
}s

if(typeof obj[prop] == “object”) {
obj[prop].param = arg;

JSSeek Output

error:8:4 undefined can be null or undefined
null, null

Example C

There are multiple different types in javascript(object, function, number, string, boolean etc.),
which are further divided into two types; Primitive and reference. The main difference between
them is that properties cannot be dynamically be added to primitives(they can be added to their
prototypes which will then be accessible from instances of that type), and will fail silently if
attempted. Now because it fails silently, this obviously won'’t cause an error. However if you
attempt to assign a property to a primitive value, then later try to access that property, it will not
be there and the expression will give undefined. Now, an error will occur if you try to manipulate
undefined, which won’t be the value you expected. An example of this is shown here. obj is
checked for the property “prop”, then if it doesn’t exist, it is added. Later in the function, the

property “a” of the newly assigned property “prop” is assigned the value 10. If the input value obj
is any primitive value, a TypeError will be thrown.

function example(obj) {
if(obj != null) {
if(obj.prop == null) {
obj.prop = {};
}
obj.prop.a = 10;

}
}
JSSeek Output
error:6:4 obj can be a primitive
52254
-53118
Example D

Objects in javascript have keys which are strings. Properties can be added dynamically to
objects at runtime using any value as a key, however because keys must be strings, values
other than strings must be converted to strings so they can be used as keys. Each type in
javascript has a toString function on its prototype that gives the ability to convert a value to its
string representation. In the case of numbers, the result is as you would expect. e.g

(1) .toString () == “1”.The same applies for booleans, and in the case of strings, the
value is the same as that of the string. However in the case of complex types the result is not so
obvious. Objects return “ [object Object]” and Arrays return » [object Array]”. This

5

means that any two different objects used as keys on another object will reference the same
value of that object.

For example take two objects a and b which have different properties:
var a = { a: 1 }, b= {Db: 1 };
Then take an object c:

var ¢ = {};
Then use a as a key to add the value 1 to c:
cla] = 1;

Now, access a property of c using b as a key which will give the value 1.
clb] === 1; // true
This happens because the string representation of objects a and b are used which are the
same. The object c looks like this:
{
“[object Object]”: 1
}
This example shows how this can cause an error when the properties aren’t expected to be the
same.
function example(obj, a, b) {

if(obj != null & a !== b) {

if(obj[b] == null) {
obj[b] = {};

if(obj[a] != null) {
obj[a] = null;

return obj[b].property = a;
}

}

JSSeek output:
error:12:4 null can be null or undefined

{"null":-18386}, null, null
{"null":null}, null, null
error:12:4 obj can be a primitive
-26780, null, undefined

-9136, null, undefined

-64188, null, null
-39051, null, undefined
39475, null, null

6263, null, undefined

Usage

JSSeek provides both an APl and a command line interface. Both are described below.

API

To obtain access to the APl interface use var jsseek = require(“jsseek”); once it has
been installed using npm.

The interface only exposes one function at the moment:

#analyse
Analyse takes string input and returns an ast in the the format as specified by the Mozilla Parser
API. https://developer.mozilla.org/en-US/docs/SpiderMonkey/Parser_API

On any node that has caused an error will be appended a property detailing the reason for the
error and each of the states/branches that will cause the error. The data structure is detailed
below:

Node: {
.7
errors: {
<ERROR>: {
args: <String>,
states: Array<States>

Here’s a sample of how to use the API:

var jsseek = require(“jsseek”);
var func = “function(obj) { obj.prop = 10; }”;

var ast = jsseek.analyse(func);

https://www.google.com/url?q=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FSpiderMonkey%2FParser_API&sa=D&sntz=1&usg=AFQjCNF-1wBi7UIs7GJsGU4uG3SKLOGnDA

ERROR

NULL UNDEFINED - Logged when a property access is attempted on a possibly null or
undefined value.

PRIMITIVE PARENT - Logged when an property is accessed on a value whose parent may
be a primitive value. This would cause the property to never be assigned in the first place,
meaning the first parent would be undefined.

Command Line Interface
The command line interface allows a user to run jsseek on a file. Any function in the root of the
file will be analysed.

Jjsseek file
The format of output of JSSeek is as follows.

possible-error:<line no>:<column> <description>
sample-arguments: <argument, ...>

