Design Document

ExamiT

AUTOMATIC TEST CORRECTION PLATFORM

4th year, Software Development project
Institute Of Technology Carlow

Institidid Teicneolaiochta Cheatharlach

A LMl INSTITUTE of
TECHNOLOGY

CARLOW

At the heart of South Leinster

Roger Marciniak

Student Number: C00169733
Supervisor: Paul Barry

9th January, 2017

Table Of Contents

Table Of Contents 1
Introduction 2
Backend 2
Frontend 3
Database Structure 4
Category 4
Question 5
Test 6
Result 7
Design Class Diagram 8
Sequence Diagrams 9
Test Creation 9
Test Correction 10
GUI 10
Login Screen 10
Menu 1
Categories 12
Display Questions 13
Add Question 14
Display Tests 15
Generate Test 16
Print Test 18
Printed Test Example 19
Correct Test 20
Test Results 20
Design Over Iterations 21
Iteration 1 (24 Oct - 12 Dec) 21
lteration 2 (9 Jan - 20 Feb) 22
Iteration 3 (27 Feb - 5 Apr) 22
References 22

Introduction

This document will describe the various elements of the system like the backend technologies
used, the structure of the database, design class diagram, sequence diagrams and the graphical

user interface of the system.

In the case of the Database Structure section, it will be presented in an unusual way because
there is no one agreed method of showing a document database structure diagram.

The last section of the document will focus on the changes applied to the design of this project

over the three iterations.

Backend

The server hosting the ExamIT system is an Arch Linux server, although any Linux server would
suffice. All of the necessary packages and libraries were available in the Linux distribution
package repository. Because of this, setting up the necessary dependencies and packages is
straightforward.

OpenCV needs to be installed from the package repository. Any existing version will be working
as the code is version proof with version checks and alternative steps.

MongoDB needs to be installed from the package repository. Version 3.4 is used with this
project.

Python 3.6 was chosen as the development language because of its improvements like the print
function, integer division, unicode strings by default. Python 3.6 comes pre-installed with the Arch
Linux distribution.

For the simplicity of installing Python packages necessary, pip is installed from the package
repository. Afterwards, all the Python packages can be installed using the pip install command.

The packages which need to be installed using pip are:

Flask - Python web micro-framework

Cv2 (OpenCV binding)

numPy - scientific computing package for Python

Wand - Image manipulation binding to ImageMagick (preinstalled on Linux systems)

pyFPDF - A popular PDF manipulation library ported from PHP

The remaining packages used come preinstalled with Python and are listed with the code in the

Technical Manual.

Frontend

For the purpose of the frontend the following technologies are used:

1. Bower was used to fetch all the necessary dependencies.
2. The user interface is designed using Bootstrap elements, CSS and HTML code.
3. The technologies used for dynamic content are:

a. jQuery (dynamic tables, onclick events ie.)

b. Jinja2 templating language

Some third party plugin solutions are used:

e Datatables - visually attractive table plugin for jQuery [J1]

e Fontawesome - used for attractive fonts [F1]

Database Structure

Because the project does not use a standard SQL database design, but instead has the
document form, there is no way of displaying the database structure in the same format.

Therefore, the author will present the database design by explaining it in detail.
Firstly, the database consists of the following collections:

1. Categories - categories for the questions

2. Questions:
a. Most important collection
b. Contain a list of answers, answer key
c. Tests are made up of questions

a. Test metadata
b. Questions
4. Results:
a. Which test is the result from
b. Score

Each collection consists of documents, if a collection is ‘Questions’ then each document inside of
it is a ‘Question’ document.

Each document has an automatically generated id element, ObjectID.

Example: "_id" : Objectld("58a5ac9735f23f071e50d14e"

Category

{
"_id": "ObjectId(\"58a5ac9735f23f071e50d14e\")",

"CATEGORY": "physics",
"CREATED": "Thu, 16 Feb 2017 13:43:51 GMT"

’

Categories are used to draw questions for a test. For example, if the user selects the ‘Physics
category, and a number of questions (5, 10, 15...), that amount of questions of the ‘Physics’
category will be randomly drawn from the available questions.

Fields: _id, CATEGORY, CREATED

Question

{
"_id": "ObjectId(\"58a5be@335f23f071e50d542\")",

"CATEGORY": "electronics",
"QUESTION": "Radix of binary number system is __ ?",
"ANSWERS": [
"o,
nqv
nyn
"A & B",
ngn
1,
"KEY": "C",
"CREATED": "Thu, 16 Feb 2017 14:58:11 GMT"

Questions are the core element of a test. Each test is made out of questions. Each question has a
question category to which it belongs, question body and a list of answers along with the answer
key.

Flelds: _id, CATEGORY, QUESTION, ANSWERS, KEY, CREATED

Test

{
" id": "ObjectId(\"58aeb93df2afa3ael495df4b\")",

"CATEGORY": "electronics",
"CREATED": "Thu, 23 Feb 2017 10:27:49 GMT",
"LECTURER": "John Marks",
"MODULE": "Advanced Electronics"”,
"QUESTCNT": 5,
"QUESTIONS": [
{
"ANSWERS": [
"AB + CD",
"AB(CD)",
"(A + B)(C+D)",
"(A)B(CD)",
npAp
I,
"CATEGORY": "electronics",
"CREATED": "Thu, 16 Feb 2017 14:59:25 GMT",
"KEY": "A",
"QUESTION": "Which of the following expressions is in the sum-of-products
(SoP) form?",
" id": "58a5bed4d35f23f071e50d554"
}, //followed by multiples of ‘Question’
1,
"TIME_ALLOWED": "25 minutes”,

"TITLE": "Electronics Basics Assessment”

Each test contains its category, which is the same document used for categorising questions as
all the questions in the test must be of the same category in the current design. It also contains
test metadata like the lecturer, module, amount of questions and the question documents.

7

The question documents are not referred to from the test, they are directly copied in their full
form. This is because, if the questions were referred to from the test, and if a question was
deleted from the collection of questions that is being used in a test, then the test would be
broken.

This causes the database to essentially store the same information multiple times but is
necessary for the correct functioning of the system. Also, because the data is of BSON form, it
does not in fact use a lot of storage space.

Fields: _id, CATEGORY, CREATED, LECTURER, MODULE, QUESTCNT, QUESTIONS,
TIME_ALLOWED, TITLE

Result

{
" id": "ObjectId(\"58e160753669e80543cda562\")",
"TEST": "Electronics Christmas Assessment"”,
"SCORE": 100,
"CORRECT": 15,
"AMOUNT": 15,

"FLAG": false,
"CREATED": "Sun, ©2 Apr 2017 21:35:01 GMT",
"HREF": "58e160753669e80543cda562.png"

The result document is created when a test is corrected. It contains information about the test it is
a result for, the score achieved by the student, number of correct answers and the number of
questions. It also contains a flag boolean field which informs if the test was void or corrected
properly. The test becomes void if a wrong answer sheet has been supplied or if the student
broke the correction algorithm by marking the test sheet in places not meant for that purpose.
The ‘HREF’ field is a filename of the annotated by the algorithm form of the test scanned, which
serves the purpose of the lecturer being able to view and correct the test personally if the test is
void or if the lecturer suspects the unlikely algorithm mistakes.

Fields: _id, TEST, SCORE, CORRECT, AMOUNT, FLAG, CREATED, HREF

Design Class Diagram

FlaskView

+ render_template() : FlaskTemplate
+ send file) : Flle
+ send_from_directory() : Flle

™

<<FlaskApp=>
App
-app : FlaskApp
- admin : Admin
+send_bower() : FlaskView

+ send_js() : FlaskView
+ init_login() : String

+ index() : Flask\View

+ student() : FlaskView
+ fourQhFour() : String

=y vmm mm e e vy

+ letterZnum() : int

+ getAnswerkey() : dict
+ allowed file() : boolean
+ get_quests() : tuple

+ get_cats() : tuple

+ get tests() : tuple

+ tools() : void

+ index() : FlaskView

+ cats() : FlaskView

+ questions() : FlaskView

+ add guestion() : FlaskView
+ tests() - FlaskView

+ gentest() : Flask\iew

+ gentest_conf() | FlaskView
+ gentest_confd() : Flask\View
+ printtest() : FlaskView

+ printconfd() : FlaskView

+ correcttest() : Flaskview

+ results() : Flask\iew

+ displayresult() : FlaskView
+ showimg() : FlaskView

+ login_view : FlaskView

+ logout_view : FlaskView

v Y

T
LoginForm User :
- username : String - id : String I
= PE.EEWBI'd 2 Stnng _______ _D = pﬂﬁmﬂj :Stril'lg ¢
+ validate_login{) : void T - St
+ get_user() : User get) . PDF
T - height : double
: - width : double
Vi - color : Color
UserNotFoundError + header() : void
+ footer() : void
+ generate() : String

Sequence Diagrams

Test Creation

:Browser System

Actor

:% present Create Test View

|
[submits test form

chooses "Create Test”

makeTest{)

LOOP while
(enoughQs
(False))

oPT <——notify not enough questions

——— submits new form

|€ present generation confirmation
|

——— confirms creation

saveToDB()

(informs about generation success

10

Test Correction

:Browser tem

|
Actor |
|
: chooses "Correct Test” |
:% present Corect Test View
|
LOOP while |—— submits test form
(allowed_file | | sendForm(form)
(False)) |
I allowed_file(boolean)
| ke i
ANNENEIANERNARGENEEN AR return(aliowed_file{boolean)
l% notify wrong file type e T

saveToDBI()

|
|
|
|
|
|
|
l(- informs about comection success
|
|
|
|
|
|
|
|
1

11

GUI

Login Screen

A simple login screen, allowing lecturers to login and use the system

Please Sign In

roger
(L2111

¥/ Remember Me

12

Menu

The menu is always available in the sidebar and allows for the navigation of the web application

ExamIT v0.8

Search... Q

& Dashboard
& Categories
© Questions <

[# Tests <

Everything nested

ExamIT v0.8

Search...

@& Dashboard

& Categories

© Questions
Display Questions
Add Question

& Tests

Questions exposed

ExamIT v0.8

Search... Q

@ Dashboard
& Categories
¥ @ Questions ¢
[# Tests g
Display Tests
% Generate Test
Print a Test
Correct a Test

Test Resulis

Tests Exposed

13

Categories

Allow for creating categories which are later used for categorising questions and tests

Categories

Add a category

Category:

eg. electronics {20chars)

Add category Reset

Categories

Category Creation Date Unique ID

electronics Thu, 16 Feb 2017 13:27:11 GMT 58a5aBaf35{23f071e50d042
mathematics Thu, 16 Feb 2017 13:27:17 GMT 58a5a8h535f23f071e50d046
graphics Thu, 16 Feb 2017 13:29:18 GMT 58a5a92e35f23f071e50d067
web development Thu, 16 Feb 2017 13:29:42 GMT 58a5a93f35{23f07 1e50d06f

logic Thu, 16 Feb 2017 13:33:35 GMT 58a5aa2f35{23f071e50d0aa
datastructures Thu, 16 Feb 2017 13:38:11 GMT 58a5abh3135f231071e50d0e2
networking Thu, 16 Feb 2017 13:38:51 GMT 58a5ab6b35f231071e50d0f5
programming Thu, 16 Feb 2017 13:39:43 GMT 58a5ah9735f23f071e50d101

14

Display Questions

Displays a table of all the questions previously generated in the system

Questions

Question Collection

Question Category Key Creation Date Unique ID

guestion1? electronics A Thu, 16 Feb 2017 58a5b1f135f23f071e50d27¢c
14:06:41 GMT

The schmitt trigger may be used to? electronics c Thu, 16 Feb 2017 58a5bbfd35f23f07 1e50d4bd
14:49:33 GMT

Which of the following is minimum error code? electronics B Thu, 16 Feb 2017 58a5hcee3sf23f071e50d4f8
14:53:34 GMT

A simple flip-flop electronics B Thu, 16 Feb 2017 58a5bdcc35f23f071e50d534
14:57:16 GMT

Radix of binary number system is ? electronics c Thu, 16 Feb 2017 58a5be0335f23f071e50d542
14:58:11 GMT

Which of the following expressions is in the sum-of- electronics A Thu, 16 Feb 2017 58a5bedd35f23f071e50d554

products (SOP) form? 14:59:25 GMT

The systematic reduction of logic circuits is accomplished electronics B Thu, 16 Feb 2017 58a5bea035f23f071e50d567

by: 15:00:48 GMT

15

Add Question

Allow for adding questions to the collection of questions

Add Question

Fill in the form to add a question

Category: Category missing?
datastructures v
Question:

What is a current? (up to 200 chars)

Answers:

Answer A

Answer B

Answer C

Answer D

Answer E

Correct answer key:

A v

Add question Reset

16

Display Tests

Displays all the available tests previously generated in the system

Tests

Generated Tests

Time

Test Lecturer Allowed Module Questions Category Creation Date Unique ID
Web Dev Quiz - Feb ~ Roger 10 Web 5 web Sun, 19 Feb 2017~ 58a%e3c5480879efef699939
19 Tester minutes Development development = 18:28:02 GMT
Spring Electronics Frank 25 Advanced 5 electronics Sun, 19 Feb 2017 58a%eb39480879%efef699ac3
Assessment Shocke minutes Electronics 19:01:48 GMT
Electronics Basics John 25 Advanced 5 electronics Thu, 23 Feb 2017 58aeb93df2afa3ae1495dfab
Assessment Marks minutes Electronics 10:27:49 GMT
democat test Demo 5 mins Demo Module 5 demo Sat, 25 Mar 2017 58d6a689939af12074f6c434

Lecturer category 17:18:42 GMT
Electronics Roger 15 Applied 15 electronics Sat, 01 Apr 2017 58dfc37dfdb041e8360dda6l
Christmas Spark minutes Electronics 16:11:14 GMT

Assessment

17

Generate Test

Allows for the generation of tests

Generate Test

Fill in the form to generate a test

Test title:

eg. VDM-SL Notation Assessment

Time allowed:

eg. 20 minutes

Lecturer:

eg. Kevin Parks

Module:

eg. Software Engineering

Category: Category missing?
datastructures v
Amount of questions:
5 v

Draw Questions Reset

18

Confirm Test Generation

Quick Web Recap

Time allocated: 10 minutes
Module: Webh Development
Lecturer: Paul Barry
No. of questions: 5

Questions:

1. What is the correct HTML tag for inserting a line break?

2. Which of these is not a Python web framework?

3. Which tag inserts a line horizontally on your web page?

4. A webpage displays a picture. What tag was used to display that picture?
5. How can you make an e-mail link?

Test was successfully generated!

Test Generation

Test generation complete!
If you would like to continue working with tests, you can:

Display all tests

Generate another test

19

Print Test

Used for printing the existing tests

Print Test

Choose a test for printing

Pick a test:

Electronics Christmas Assessment v

« Choose this test

20

Printed Test Example

ExamIT - Copyright 2017

C001 ANSWERBOOK
STUDENT NUMBER

Title: Electronics Basics
Time: 20 minutes
Lecturer: John Marks
Module: Advanced Electronics
Questions: 15

{OLOLOLOL®)
{OLOLOLOLE®)
{OLOLOLOL®)
{OLOLOLOL®
{OLOLOLOL®
AL IR ISP
{OLOLOLOL®
{OLOLOLOL®
LOLOLELOLS
10 AL e =)
A O O
12wl P IO
B a0
A GLOLOLOL®
R OLOLOLOL®)

(e} (0] ~ [9)] u B w N —_

21

Correct Test

Used for correcting scanned tests
Correct Test

Which test do you wish to correct?

Select test:

Web Dev Quiz - Feb 19 v

™ Browse

#» Upload for Correction

File was corrected. Visit Test Results' to see scores

Which test do you wish to correct?

Select test:

Web Dev Quiz - Feb 19 A

'™ Browse

#» Upload for Correction

22

Test Results

Display the test results
Corrected Assessments

Corrected Assessments

Select one of the corrected assessments:

Electronics Christmas Assessment

Results: Electronics Christmas Assessment

Results

Select one to view the annotated test;

15/15 [Sun, 02 Apr 2017 21:35:01 GMT]
15/15 [Sun, 02 Apr 2017 22:23:17 GMT] 100.0%
15/15 [Tue, 04 Apr 2017 16:39:41 GMT]

23

Design Over lterations

lteration 1 (24 Oct - 12 Dec)

e During the first iteration, the design of the project was completely conceptual

e Most of the iteration was spent on research and learning the OpenCV and numPy
libraries in order to be able to create the correction algorithm

e The author had decided on the Python development language and Flask web framework
towards the end of the iteration

e [nitial version of the correction algorithm was created and proved working on simple test
cases

Iteration 2 (9 Jan - 20 Feb)

e The design was essentially only created in this iteration

e The database technologies were compared and MongoDB chosen as the document
schema fitted well with the data the project would generate

e The database design was created

e PDF manipulation libraries were tested and prototype tests were generated with them,
pyPDF library was chosen

e The test layout was created

e Wand library was selected for transforming .pdf files to .png for use with OpenCV

e The Flask app was built with part of he views

24

Iteration 3 (27 Feb - 5 Apr)

e The PDF generation, test correction and Flask app were all functional but working

separately
e The three parts of the system were put together
e Remaining missing views were added for the three parts
e Bootstrap was used to give the application an attractive Ul
e The design from iteration 2 proved good enough, only slight adaptations were necessary:
o The author had to alter the database model for tests (copying of the question
documents as is instead of referring to them, mentioned in detail earlier in the
document)
o Some views had to be split into multiple views for better functionality and clarity:
m Test Results were split into 2 views
m Test Generation was split into 3 views to accommodate confirmation
dialogues to ensure that they were generated correctly
References

[J1] Datatables (2017), Datatables Homepage, [online], available:
https://datatables.net/

[accessed 9 February, 2017]

[F1] Fontawesome (2017), Fontawesome Homepage, [online], available:
https://datatables.net/

[accessed 9 February, 2017]

25

https://datatables.net/
https://datatables.net/

