Central Processor

Introduction

Before a computer can solve a problem, it must be given a sequence of instructions, called a program, that tells it precisely what operations to perform and where to find the data to be operated upon. Once the program is stored in main memory, the instructions can be retrieved and executed by the computer. A specific unit is responsible for retrieving individual instructions from memory and executing them. This unit is called the central processing unit, or the CPU.

The CPU is vital to the operation of the entire computer system. It processes data as directed by the instructions stored in main memory. The CPU also controls and supervises operations involving the other system units.

In this module, we'll explain how the central processor retrieves and executes instructions. The first part of the module identifies the major functional components of the CPU and explains the purpose of each component. The second part describes the sequence of operations that the CPU performs each time it retrieves and executes an instruction. This sequence of operations is called an instruction cycle. The second part also steps through the instruction cycle for three instructions taken from the Instruction Sets module. Before beginning this module, you should be familiar with the material in the Instruction Sets module.

Central Processing Unit

The central processing unit (CPU) co-ordinates and directs the activities of the entire computer system. It is responsible for:

SYMBOL 183 \f "Symbol" \s 10 \h
Locating and retrieving instructions from memory, one at a time.

SYMBOL 183 \f "Symbol" \s 10 \h
Decoding each instruction and generating control signals to start the specified operation.

SYMBOL 183 \f "Symbol" \s 10 \h
Performing the arithmetic or logical operation called for by each instruction.

SYMBOL 183 \f "Symbol" \s 10 \h
Directing and controlling data movements between the CPU and main memory.

Figure 1 illustrates the major registers and components that are usually part of the CPU. Connecting these registers and components is a system of electrical pathways set up by the timing and control circuits. These registers and components, together with the timing and control circuits, carry out the functions of the CPU.

[image: image1.wmf]
Figure 1. CPU Registers and Components

General-Purpose Registers (GPR's)

The general-purpose registers, shown in Figure 1, are the CPU's local storage area. Operands or operand addresses are stored here, where they can be accessed quickly by other parts of the CPU. Each general-purpose register is the size of one computer word. Since they provide a limited amount of local storage, the general-purpose registers should be used selectively.

Processor Status Register (PS)

This register stores information about the results of the last operation in a set of bits called condition codes. The condition code bits are set or cleared to indicate whether the result of the last operation was positive, negative, or zero. The jump instructions cause the CPU to check these condition codes to determine what action to take. For example, the JA instruction initiates a jump, if the condition codes indicate that the last instruction produced a positive result.

Table 1 lists some common jump instructions and identifies the condition necessary for the jump to be taken.

Table 1.
Jump Instructions

	Jump Instruction
	When is the Jump Taken?

	Jump if Above (JA)
	If the bits in the condition codes indicate the last result was positive.

	Jump if Above or Equal (JAE)
	If the bits in the condition codes indicate the last result was positive or zero.

	Jump if Below (JB)
	If the bits in the condition codes indicate the last result was negative.

Program Counter (PC)

The CPU must have some way of keeping its place in the sequence of instructions that it executes. The PC fulfils this role; it stores the address of the next instruction to be executed. Before a program is executed, the starting address of the first instruction is loaded into the PC. The address in the PC is then used to fetch the instruction from main memory. While the current instruction is being executed, the address in the PC is automatically incremented. So, the PC always "points" to the next instruction to be executed. Figure 2 shows the PC being updated after the execution of an instruction.

[image: image2.wmf]
Figure 2. Updating the PC

Usually, instructions are executed in sequential order, and the PC is simply updated by one instruction. However, when a jump instruction is encountered, it can alter the normal instruction sequence and redirect the CPU to another point in the program. In this case, the CPU obtains the address of the next instruction by adding the current contents of the PC to an offset value which is part of the jump instruction.

Figure 3 illustrates the addition of an offset to the contents of the PC. The CPU will then fetch and execute the instruction to which the updates PC is pointing.

[image: image3.wmf]
Figure 3. Offset Added to PC for Branch Instruction

Arithmetic Logic Unit (ALU)

The ALU contains the circuits which perform arithmetic and logical operations. Arithmetic operations calculate numeric results. Typical arithmetic operations include addition, subtraction, division, and multiplication. The results of logical operations are determined by following the rules of Boolean Algebra. Some common logical operations are AND, OR, and NOT. Table 2 lists examples of arithmetic and logical operations.

Table 2.
Typical Arithmetic and Logical Operations Performed by the ALU

	Arithmetic Operations
	Description

	ADD D, S
	The source operand and destination operand are added and the sum is stored in the destination operand.

	SUB D, S
	The source operand is subtracted from the destination operand, and the difference is stored in the destination operand.

	INC O
	The operand is incremented, the result is stored back in the operand.

	Logical Operations
	Description

	AND
	Clears selected bits in an operand.

	OR
	Sets selected bits in an operand.

	TEST
	Tests selected bits of an operand. A logical AND operation, but the operands are not changed.

The ALU receives signals from the instruction decoder that specify which operation is to be performed. For example, the ALU may receive a signal to increment an operand. The circuits in the ALU perform the specified operation and send the result along a data path to the appropriate destination. Usually, the result is stored in a general-purpose register or in main memory. Information about the result is stored in the condition codes which are part of the PS register.

Timing and Control Circuits

The timing and control circuits establish electrical pathways that run throughout the CPU. They are responsible for moving data into the right place at the right time. For example, in Figure 4, the timing and control circuits establish the electrical pathways that move the two operands into the ALU. After the ALU performs the addition, the sum is sent to register CX over another pathway established by the timing and control circuits.

The clock is responsible for the timing issues. The control unit, as we saw in the Introduction to Architecture section, is responsible for sending control signals to all the components of the CPU and the devices which the CPU has to manage. The control unit is connected to all the internal CPU components via an internal CPU control bus and to all the devices connected to the processor via the control bus. The control unit asserts BX to copy its contents onto the internal data bus, and the ALU to copy the data. The controls unit repeats this for CX. Finally it asserts the ALU to copy the result of the addition onto the internal data bus, and for CX to copy the data.

[image: image4.wmf]
Figure 4. Pathways Established by the Timing and Control Circuits

Address Register (AR)

The address register (Figure 5) temporarily holds the address of the memory location being referenced by the CPU. The address register compensates for any differences in operating speed between the CPU and main memory. It holds the memory address until it can be accepted by main memory.

Buffer Register (BR)

The buffer register temporarily holds data that the CPU retrieves from, or sends to, main memory. Also, instructions are held here temporarily when they are fetched from main memory.

Figure 5a illustrates the roles of the address register and the buffer register when the CPU stores an item of data at a selected memory location. The address of the selected memory location is held in the address register, and the data is held in the buffer register until memory is ready to make the transfer. The control unit, in step a), copies the contents of the AR onto the address bus at the same time as it signals memory to accept an address (Ma). After an appropriate amount of time, the control unit, in step b), copies the contents of BR onto the data bus and signals memory to do a memory write (Mw).

[image: image5.wmf]
Figure 5a. Using the Address Register and the Buffer Register in a Memory Write

Figure 5b illustrates the roles of the address register and the buffer register when the CPU reads an item of data from a selected memory location. Again the address of the selected memory location is held in the address register. The control unit, in step a), copies the contents of the AR onto the address bus at the same time as it signals memory to accept an address (Ma). After an appropriate amount of time, the control unit, in step b), signals memory to do a memory read (Mr) and signals the BR to copy the data from the data bus.

[image: image6.wmf]
Figure 5b. Using the Address Register and the Buffer Register in a Memory Read

Instruction Register (IR)

The instruction register is used to hold each instruction while it is being executed by the CPU. As mentioned earlier, an instruction that is fetched from main memory temporarily waits in the buffer register. Then, it is transferred along the pathway established by the timing and control circuits to the instruction register. The contents of the instruction register are used as input to the instruction decoder. Figure 6 illustrates the movement of the instruction.

[image: image7.wmf]
Figure 6. Movement of an Instruction into the Instruction Register

Instruction Decoder

Instructions are binary combinations subdivided into operation codes and operand fields. In order to execute any instruction, the binary op code must be decoded so that the desired operation may be identified. The instruction decoder performs that task. The instruction decoder translates the binary op code into a unique signal that prepares circuits in the ALU to execute that instruction. The instruction decoder also examines the operand field in the instruction and generates signals which select the register and addressing mode needed to locate the operand(s).

Year 1
Central Processing Unit - cpu.doc
7

