Instruction Sets

Introduction

Before the computer can solve a problem, the solution must be converted into instructions that the computer recognizes. A complete series of instructions that solves a problem is called a program.

After the program is written, the instructions and accompanying data are entered into the computer and are stored in main memory. The central processor (CPU) then retrieves and executes the instructions, one at a time.

Every computer is designed to recognize a specific group of instructions, called an instruction set. The instructions that are part of one computer's instruction set may not be understood by another computer. However, there are some basic instructions that are common to most computers. In this module, we'll discuss some basic instructions from a typical instruction set.

Firstly, we'll describe the parts of an instruction and look at some typical methods for locating the data upon which the instruction acts. In the second lesson, we'll examine the individual instructions that are used in a program segment.

Parts of an Instruction

As shown in Figure 1, the two main parts, or fields, of an instruction are the operation field and the operand field.

�EMBED CDraw \s * mergeformat���

Figure 1. Two Parts of an Instruction

Operation Field and Op Codes

The first part of the instruction, the operation field, tells the CPU which action to perform. It holds a binary code, or op code, that corresponds to one of the computer's elementary instructions. Every instruction in the instruction set is assigned a different binary op code. When the CPU retrieves an instruction, this op code tells it which operation to perform.

Although instructions are stored in the computer as binary op codes, op codes are too cumbersome for a programmer to use. Consequently, the programmer uses a three- or four-letter abbreviation in place of the binary op code. This abbreviation is called a mnemonic. Since a mnemonic suggests the meaning of each instruction, they are easy to remember.

Table 1 lists some typical instructions along with their mnemonics and binary op codes.

Table 1. Typical Mnemonics and Op Codes

Instruction�Mnemonic�Binary Op Code��Increment�INC�10000000��Add�ADD�00000100��Compare�CMP�10000011��Operand Field and Operand

The second part of the instruction is the operand field. Before the CPU can perform an operation such as adding two numeric values, it must find the values. This is the purpose of the operand field; it tells the CPU where to find the data to process. The data that the instruction acts upon is called the operand. The operand field holds information that tells the CPU where to find the operand. Most instructions have one or more operand fields.

In summary, the first part of the instruction, the operation field, identifies, the action that the CPU will perform, and the second part of the instruction, the operand field, locates the operand(s).

General-Purpose Registers

An operand can be stored in main memory or in a general purpose register. A general-purpose register is a temporary storage area, the size of one computer word, which is located inside the CPU. As noted in Figure 2, the CPU may contain several general-purpose registers, the exact number depends on the computer.

�EMBED CDraw \s * mergeformat���

Figure 2. Instruction Referencing an Operand Stored in a Register

It takes less time for the CPU to access operands stored in the general purpose registers because these registers are located inside the CPU. Since there are not enough registers to store all of the operands of most programs, we reserve the available registers for operands that the CPU needs to access quickly.

Register Addressing

The method of locating an operand when the operand is in a register is called register addressing. The CPU goes directly to the register to retrieve the operand.

�EMBED CDraw \s * mergeformat���

Figure 3 Register addressing

Figure 3 shows the Increment (INC) instruction using register addressing with AX. The CPU locates the operand in AX, and stores the incremented value back in AX. After execution, AX holds the result.

Immediate Addressing

When a constant value is an operand, this is called immediate addressing. The operand value is immediately available with the instruction itself. A symbolic name is used for the constant. If one symbol is used to define another symbol, that symbol must hace a constant value, i.e.

	ALPHA	EQU 	25

	BETA	EQU	ALPHA*3

The symbols can then be used then in instructions in your program.

	MOV	CX, ALPHA

	ADD	BX, BETA

Memory Addressing

As mentioned earlier, most operands are stored in main memory. This requires another method of locating the operand because the CPU can't get to the operands directly. There are variou methods of memory addressing:

1.	Direct addressing

2.	Register indirect addressing

Direct Addressing

A direct address is specified by using a variable or label.

	MOV	BX, VALUE

	JMP	NEXT

are instructions that have simple direct addresses. In the case of the MOV, the label refers to a an address located in the data portion of the program, the JMP instruction refers to an address in the code portion of the program.

This addressing mode is sometimes referred to as direct addressing. When the CPU gets an instruction using direct addressing, it must look a certain number of locations ahead or behind the current location.

One advantage in using direct addressing is that the programs are self-documenting. The labels have meaning, so the programs are easier to understand and the operands are easier to locate.

�EMBED CDraw \s * mergeformat���

Figure 4. Using a Label as a variable

In the example shown in Figure 4, we specified the location of the operand with the label SALES to avoid using a fixed memory address. The distance between the instruction and the operand it is referencing is called the offset. This distance stays the same regardless of where the program is stored in memory. A program called an assembler calculates the exact value of this offset.

When relative mode is specified, the CPU retrieves the instruction and the offset value that accompanies the instruction. It then adds the offset value to the current address in the PC to obtain the address of the operand. If the operand is ahead of the instruction that refers to it, the offset is a positive number. If the operand is behind the instruction, the offset is negative.

�EMBED CDraw \s * mergeformat���

Figure 5. Direct Addressing

Figure 5 illustrates how the CPU calculates the address of the operand when relative mode addressing is used. In our example, the operand labeled SALES is your memory locations ahead of the instruction that references it. If we count four locations ahead of the place pointed to by the PC, we locate the operand. So, the CPU adds the PC address and the offset value to get the address of the operand.

Register Indirect Addressing

�EMBED CDraw \s * mergeformat���

Figure 6. Instruction Accessing an Operand Stored in Main Memory.

The address of the memory location that we wish to reference is put into a register. To specify to the assembler that register indirect addressing is used, we enclose the register name in square brackets. Only certain registers can be used in this fashion, BX, BP, SI, and DI.

Figure 6 shows the Increment instruction referencing an operand stored in main memory. BX now holds the address of the operand and not the operand itself. This is called register indirect addressing. Memory addressing is used when the operand is stored in a location in main memory. With register indirect addressing, the register contains the address of the operand. So, the CPU first goes to BX, gets the address of the operand, then goes to that address in main memory to retrieve the operand. After the Increment instruction is executed, the CPU stores the incremented value back in the same memory location.

In summary, two general methods of locating operands are register addressing.and memory addressing. With register addressing, the operand is stored in a register located in the CPU. With memory addressing, the register referenced by the instruction holds the address of the operand. The operand is stored at this address in main memory. Figure 7 illustrates direct and memory addressing.

�EMBED CDraw \s * mergeformat���

Figure 7. Two General Methods of Locating Operands

Addressing Modes

Every computer is designed to recognize a few specific methods of locating operands. These predefined methods of locating operands are called addressing modes. The names of the addressing modes vary depending on the computer, but usually the name of a particular mode describes the method that is used to locate the operand. All computers have an instruction set and a set of addressing modes.

Register addressing, in which the operand is stored in a register. Memory addressing, in which the register contains the address of the operand.

Table 2 illustrates the addressing modes that we have discussed so far.

Table 2. Addressing Modes

Mode�Description�Location of Operand��Register addressing�CPU finds the operand directly in a register.�In a register.��Memory addressing�Address of operand is held in a register.�In main memory.��Source and Destination Operands with Two Operand Instructions

Many instructions require more than one operand. We have a different name for each of these two operands because they are affected differently when the instruction is executed. The first operand is called the destination operand. The second operand is called the source operand. In some instructions, the destination operand really has a dual purpose: lt tells the CPU where to find one of the operands, and it tells the CPU where to store the results of the operation.

�EMBED CDraw \s * mergeformat���

Figure 8. Source and Destination Operands

Figure 8 illustrates an Add instruction which uses a source operand and a destination operand. The CPU locates both operands and stores the sum in the location of the destination operand. The CPU uses the destination operand twice: first to locate one of the values to be added, and then to store the sum of the addition. Notice that the source operand is not changed, but the destination operand is replaced by the sum of the two operands.

In a two-operand instruction, each operand can use a different addressing mode. The source operand may be stored in main memory and the destination operand may be stored in one of the general-purpose registers. Consequently, they would use different modes of addressing.

�EMBED CDraw \s * mergeformat���

Figure 9. One Instruction Using Two Different Addressing Modes

In Figure 9 the source operand (S) uses memory indirect addressing mode with BX, and the destination operand (D) uses register mode with AX. The CPU retrieves the operands and stores the sum back in AX, the location of the destination operand.

What Determines the Number of Operands?

The number of fields an instruction has may depend on the following factors:

�SYMBOL 183 \f "Symbol" \s 10 \h�	The design of the computer;

�SYMBOL 183 \f "Symbol" \s 10 \h�	The particular instruction;

�SYMBOL 183 \f "Symbol" \s 10 \h�	The particular program.

Based Addressing

This type of addressing is similar to register indirect addressing, except a displacement can be added to the register value, forming an offset to be used as a memory address. There are a number of ways to specify this displacement.

	ARRAY	DW	10,20,30,40,50	;An array with 5 elements

	ENTRY	EQU	3	;An index

	MOV	BX, OFFSET ARRAY	;Store the starting address of the array in BX

	ADD	BX, ENTRY	;Gets the address of the third element

	MOV	AX, [BX]	;Stores the third element in AX

Similarly, can write

	MOV	BX, OFFSET ARRAY

	MOV	AX, [BX + ENTRY]	;BX+ENTRY is the address of the third element

Indexing Addressing

With based addressing, we placed the address of the data structure into a register and used a displacement as an index into the structure. Indexed addressing works in a similar manner, except the displacement is placed in a register, and the base address of the data structure is specified. Si and DI are normally used as index registers.

	MOV	SI, ENTRY	;Index into data structure is 3

	MOV	AX, ARRAY [SI]	;Stores the third element of the array in AX

Based Indexing Addressing

As the name would suggest, this is a combination of the above two forms of addressing. We can use BX or BP in conjunction with SI or DI.

To sum up the elements in the array,

	SIZE	EQU	5

	MOV	BX, OFFSET ARRAY

	MOV	DI, 0	;DI is used as an index pointer into the array

	MOV	AX, 0	;Initialise the sum

NEXT:	ADD	AX, [BX] [DI]	;Offset into array is pointed to by DI

	INC	DI	;Increment the index

	CMP	DI, SIZE	;See if we have reached end of the array

	JB	NEXT	;Sum is in AX

The advantage of this type of addressing is that we can access elements of the array without using the array name itself. The address of the array might be passed as a parameter to a procedure.

Program Counter

In order to execute a program, the CPU first must retrieve each instruction from memory. One register is used to hold the address of the next instruction to be executed. This register is called the program counter, or PC. After the CPU retrieves an instruction, it updates the address in the PC. When the CPU is ready for another instruction, it uses the address in the PC to locate the instruction in main memory.

�EMBED CDraw \s * mergeformat���

Figure 10. Function of the Program Counter

Figure 10 shows instructions stored in contiguous memory locations. The CPU retrieves and executes the instructions one at a time in order. The arrow in the example shows the PC pointing to the next instruction. The CPU updates the address in the PC after it retrieves each instruction.

Summary of Addressing Modes

Table 3 summarizes the four addressing modes covered here.

Mode�Description�Location of Operand��Register�CPU accesses the operand directly.�In a register.��Direct�Operand is labeled. No fixed memory address.�PC addr. + Offset = Operand address�In main memory.��Register Indirect�Address of operand is held in the register.�In main memory.��Based Addressing�The address of a structure in memory is held in a register. Elements of that structure are accessed by a displacement value.�In main memory.��Indexed Addressing�The offset of an element within a structure in memory is held in a register. The element is accessed by supplying the name of the structure, and this offset.�In main memory.��Based Indexed Addressing�The address of a structure in memory is held in a register (BX or BP). The offset of an element within that structure is also held in a register(SI or DI). Elements are accessed using these two registers.�In main memory.��Mode Specifier and Register Specifier

We know that an instruction specifies one of several addressing modes and references one of the general-purpose registers for each operand. For this reason, the operand field contains a mode specifier and a register specifier. The mode specifier identifies the particular addressing mode and the register specifier identifies the register used.

�EMBED CDraw \s * mergeformat���

Figure 11. Mode and Register Specifiers

Figure 11 shows an instruction with two operand fields. Each operand field has a mode specifier and register specifier. In writing an instruction, we specify an addressing mode and choose a general-purpose register for each operand. Relative mode addressing is the only mode in which we don't choose a general-purpose register. In relative mode, the PC is always used to calculate the address of the operand.

Figure 12 shows the mode and register specifiers for two Add instructions. Each operand field must specify a mode and a register.

�EMBED CDraw \s * mergeformat���

Figure 12. Mode and Register Specifiers in Sample Instructions

Typical Instruction Set

Implementing a Loop

Loops are useful for repeating a series of instructions a specified number of times. All loops need a counter to keep track of the number of times the loop has been executed. They also need a step which provides an exit from the loop after it has executed the specified number of times. We use the Compare instruction to compare the number of times that we want to repeat the loop with the counter, which is keeping track of the number of cycles completed. A jump instruction then takes the result of the comparison and determines whether to direct the program back to the beginning of the loop or not. Let's look at how the CPU executes the Compare instruction and the Jump Greater Than (JG) instruction.

Compare Instruction

When we use the Compare (CMP) instruction, we only want information about the relative sizes of two operands. We do not want to change the operand in any way. Therefore, the Compare instruction simply subtracts the second operand from the first operand and stores the result in a hidden register, but does not change the operands (see Figure 13).

�EMBED CDraw \s * mergeformat���

Figure 13. Compare Instruction

If operand A is larger than operand B, the result will be positive. If operand A is smaller. the result will be negative. If they are equal, the result will be zero. These three possible outcomes of the Compare instruction are illustrated in Figure 14.

�EMBED CDraw \s * mergeformat���

Figure 14. Three Possible Results of the Compare Instruction.

Status Register

The jump instruction uses the results of the comparison to determine if the jump will be taken. So, we need a place to retain information about the results of the Compare instruction. This is one of the functions of the status register; it stores information about the last operation executed by the CPU. It contains a combination of bits which signify if the result of the last operation was positive, negative, or zero. Of course, the status changes with every operation. After the Compare instruction subtracts the operands and stores the result in the hidden register, the status register indicates whether the result is positive, negative or zero.

Jump if Above Instruction

Now, the Jump if Above instruction causes the CPU to look at the status register. If the register shows the result of the Compare instruction is positive, the jump is taken. The CPU is directed to resume execution at the labeled instruction.

�EMBED CDraw \s * mergeformat���

Figure 15. Executing the Jump Greater Than Instruction

In Figure 15, A is greater than B, so the status register shows the result is positive. The Jump if Above instruction checks the status register, finds the result is positive and directs the CPU to execute the instruction at the label LOOP.

Altering the Sequence of Execution

In order to execute the instruction at the label LOOP, the CPU must alter its normal instruction sequence. It does this with the help of the PC. As mentioned earlier, the PC keeps track of the address of the next instruction. When the CPU is ready for the next instruction, it simply goes to the address in the PC. In order to re-direct the CPU to the labeled instruction, the address in the PC must point to the labeled instruction.

The labeled instruction is a relative distance or offset away from the jump instruction. As shown in Figure 16, the offset is -3. Therefore, when the jump is taken, the CPU adds the offset value (-3) to the address in the PC. This new address replaces the old address in the PC. The PC now points to the instruction at the label LOOP.

�EMBED CDraw \s * mergeformat���

Figure 16 The JA Changing the Address in the PC

Other Jump Instructions

Jump instructions, like the ones listed in Table 4, allow the CPU to change the order of executing instructions while the program is running. As we mentioned, instructions are stored in contiguous memory locations. Normally, they are executed one after another in order. A jump instruction can alter the normal sequence. The Jump if Above instruction initiates a jump if the result of the last operation is positive. The Jump if Below (JB) instruction directs the CPU to take the jump if the result of the last operation is negative. The Jump Above or Equal (JAE) instruction directs the CPU to take the jump if the result of the last instruction is positive or zero.

Table 4. Other Jump Instructions

Mnemonic�Instruction�When Is The Jump Taken��JA�Jump if Above�Result Is Positive��JB�Jump Less Than�Result Is Negative��JE�Jump if Equal�Result is Zero��JAE�Jump if Above Or Equal�Result is Positive Or Zero��JBE�Jump if Below Or Equal�Result is Negative Or Zero��JNE�Jump if Not Equal�Result is not Zero��.�.�.�.�.�.�.�.�.��

Year 1	Instruction Sets- insets.doc	�PAGE�1�

