
  
Student Name: Ray Shannon 

Student ID: C00079959 
Student e-mail: c00079959@itcarlow.ie 

Supervisor: Paul Barry 
 

BSc (Honours) in Software Development (4th Year) 
 Institute Of Technology Carlow, 

 Kilkenny Road, 
 Carlow. 

Date: 17/04/2015 
 

Department of Computing and Networking, 
 Institute Of Technology Carlow 

 

 

 

  

 
 
 
 
 

Utility Watch 
Research Manual 

 

 

 

 



Utility Watch Ray Shannon 
 

2 
 

 

 

 

 

 

 

 

 

 

 

Abstract 

 The purpose of this document is to detail the completed work and effort carried out in 

researching each element of the project. This document will contain all researched material, some of 

which may not be used in the final project, but may have been researched for comparative purpose. The 

document format may not be in chronological order, rather grouping relevant and linked material with 

the aspect of the project being discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Utility Watch Ray Shannon 
 

3 
 

 

Table of Contents 
1. Initial Investigation ................................................................................................................................ 4 

1.1. What similar products exist .......................................................................................................... 4 

2. Galileo Board ......................................................................................................................................... 6 

2.1. Board features .............................................................................................................................. 7 

2.2. Initial connectivity ......................................................................................................................... 7 

2.3. Supported Operating Systems ...................................................................................................... 8 

3. Network Configurations ........................................................................................................................ 8 

3.1. Local configuration ........................................................................................................................ 8 

3.2. Global Configuration ..................................................................................................................... 9 

4. 3rd Party Hardware .............................................................................................................................. 11 

4.1. Network analysis for data packets .............................................................................................. 13 

4.2. Network analysis for control packets ......................................................................................... 15 

5. Required Software and Technologies ................................................................................................. 16 

5.1. Python ......................................................................................................................................... 16 

5.2. Flask ............................................................................................................................................ 16 

5.3. Jinja2 ........................................................................................................................................... 16 

5.4. JQuery ......................................................................................................................................... 17 

5.5. AJAX............................................................................................................................................. 17 

5.6. SQLite .......................................................................................................................................... 17 

5.7. MatplotLib vs HighCharts ............................................................................................................ 18 

5.8. Responsive Web Design .............................................................................................................. 19 

5.9. Git ................................................................................................................................................ 19 

6. Appendix ............................................................................................................................................. 19 

Galileo Gen1 Win 7 Setup ........................................................................................................................... 20 

Linux image on Galileo SD card setup and testing .................................................................................. 23 

6. References .......................................................................................................................................... 28 

 

 

 



Utility Watch Ray Shannon 
 

4 
 

 

 

 

 

1. Initial Investigation 

1.1.  What similar products exist 
 Once the final project submission was accepted, I started my research by looking at what similar 

products existed on the market. I wanted to see what the basic specification was being offered and 

also if any product stood out by offering something different which set them apart for other 

competitors. The following is a review of what I discovered and what I felt I would like to include and 

maybe improve in my project. 

Company: Thermtec Energy Limited  

Market: Domestic and Commercial 

Domestic Products:  OWL – Electricity, heating, water heating. 

Commercial Products: Energy survey, Site analysis, audits, Billing Analysis, thermal imaging. 

Link: www.theowl.com1  

 Thermtec Energy Limited is an Irish company offering a wide range of energy monitoring 

solutions to both the Irish and UK markets. They provide services which cover 3 Phase monitoring, 

domestic electricity, home heating and hot water along with survey, audits and site analysis. They have 

products for both domestic and commercial markets as listed above. 

My Verdict:   

 Taking aside and just comparing the similar aspects of my proposed product with the OWL 

domestic product, the basic offerings were quite similar. Both the OWL and Utility Watch products offer 

remote access to a dashboard displaying current data. The main difference between both products was 

that the owl did not offer historical data, so it was difficult to compare this week’s consumption with 

previous weeks. Another difference was the OWL offered a cloud service and the package also 

contained a handheld display which the Utility Watch does not. It will be a standalone unit employing a 

web application to display all requested information. 

 

http://www.theowl.com/


Utility Watch Ray Shannon 
 

5 
 

 
Fig.1 OWL energy monitors 

Company: efergy 

Market: Domestic 

Domestic Products:  Engage Platform – Home automation, energy consumption, water time. 

Link:  www.efergy.com2 

 

 Efergy (efficient energy) is a global company with offices in the UK (headquarters), Hong Kong, 

China, Australia, United States, Canada and South Africa. Their flagship product is the wireless electricity 

monitor, and they have many add on products which complement it. They primarily focus on domestic 

markets. 

My Verdict:   

 Both the efergy and Utility Watch share similar basic offerings like historical data, home 

automation and temperature control. One functionality, which I really like but would be unable to 

replicate, is the water time feature. This tells the shower user the amount of water and energy being 

used which may encourage people to be more efficient. 

 

http://www.efergy.com/


Utility Watch Ray Shannon 
 

6 
 

 
Fig. 2 efergy energy Monitors 

 

 

 

2. Galileo Board 
 The Intel® Galileo board is based on the Intel® Quark SoC X1000, a 32-bit Intel Pentium®-class 

system on a chip (SoC). It is the first board based on Intel® architecture designed to be hardware 

and software pin-compatible with shields designed for the Arduino Uno R3. The Galileo board is also 

software-compatible with the Arduino Software Development Environment, which makes getting 

started a snap. 3 



Utility Watch Ray Shannon 
 

7 
 

 

Fig. 3 Intel Galileo Board 

2.1.  Board features 
 In order to design my product, I needed to know and understand the full capabilities of the 

Galileo Board. What features the board acquired in relation to 

 initial connectivity 

 supported operating systems 

 programming language used 

 network connectivity 

 available communication ports 

 processor specifications 

 storage options 

 

2.2. Initial connectivity 
 

 The Galileo board has an underlying linux OS but it is very light-weight. The Arduino IDE must be 

downloaded to enable communication between your laptop and Galileo. The board and the laptop 

are connected using the client’s mini usb port and the laptop usb port. Drivers must be installed and 

updated on the initial connection. 

  The IDE has a library of test sketches which can be uploaded and executed. One of the initial 

sketches which you are encouraged to run is the blink test. This is a basic test which tests 

connectivity between the board and laptop and ensures correct operation of the board. The code 

used in the sketches is open c, and a sample blink sketch is shown below. 
/* 

  Blink 

  Turns on an LED on for one second, then off for one second, repeatedly. 

 */  

// Pin 13 has an LED connected on most Arduino boards. 



Utility Watch Ray Shannon 
 

8 
 

// give it a name: 

int led = 13; 

 

// the setup routine runs once when you press reset: 

void setup() {                 

  // initialize the digital pin as an output. 

  pinMode(led, OUTPUT);      

} 

 

// the loop routine runs over and over again forever: 

void loop() { 

  digitalWrite(led, HIGH);   // turn the LED on (HIGH is the voltage level) 

  delay(1000);               // wait for a second 

  digitalWrite(led, LOW);    // turn the LED off by making the voltage LOW 

  delay(1000);               // wait for a second 

}4 

 

2.3. Supported Operating Systems 
 

 The next step needed to allow progress was to install an operating system. The operating 

system I choose was an open source Linux OS. As previously mentioned, the board has an underlying 

linux OS. An alternative to using the inherent OS was to install a larger linux image. This image had 

to be installed onto an SD card and inserted into the SD slot on the board. On start up, the processor 

always checks the SD slot first to see if any OS exists and runs it if it finds one. 

 Once I was satisfied the image had installed correctly I had access to python, Wifi drivers, SSH 

and many more useful packages.  

 The above steps were completed using an online tutorial from sparkfun.com5. It gave good clear 

and detailed instructions and the location for the required downloads. The steps involved will be 

documented and shown in the Appendix. 

 

 

 

 

 

 

 

 

 

3. Network Configurations 

3.1.  Local configuration 
 



Utility Watch Ray Shannon 
 

9 
 

 One of the most important sections of the overall project was the ability to connect to the 

outside world. The user needs to be able to access the Galileo’s web server from anywhere in the 

wide area network (WAN). The Galileo’s network settings needed to be configured to enable 

connectivity on the local network. This would help improve the ease of connection, as it would 

eliminate direct connection to the board through the console port. Below is a sketch I used to 

configure the Galileo for my LAN. 

void setup() { 

  system("telnet -l /bin/sh"); 

  system("ifconfig eth0 192.168.1.199 netmask 255.255.255.0 up"); 

  // put your setup code here, to run once: 

 

} 

 

void loop() { 

  // put your main code here, to run repeatedly:  

   

}  

 

 

 
Fig. 4 Local settings of Galileo Board 

3.2.  Global Configuration 
 Now that my board had connectivity on the LAN, it needed to be contactable from outside the 

LAN. Initially this was difficult as I needed to be outside the LAN to test, but inside the LAN to change the 

router settings. This led me to investigate important topics such as 

 port forwarding 



Utility Watch Ray Shannon 
 

10 
 

 dynamic addresses  

 firewall access rules 

 static NAT 

A good guide to router configuration can be found at the portforwarding.com 6 website. It guides the 

user through the process once they select the make and model of the router. The guide also contains 

photos of the router pages making it very clear. My router guide can be found at this location 

http://portforward.com/english/routers/port_forwarding/TP-Link/TD-W8960N/defaultguide.htm 

 A static NAT rule was required which pointed the public ip address at the Galileo ip address. The 

application was going to run on port 5000, so any request to that port was forwarded to the Galileo 

server. The settings are displayed below in the router configuration page. 

 

 

Fig. 5 Static NAT for port 5000 to Galileo IP 

 

 

 Another area which required researching was dynamic domain name server (DDNS). Most 

domestic public ip addresses are dynamic, and change from time to time at the discression of the 

internet service provider (ISP). The public IP address remaining static was not guaranteed. There was  2 

options; Firstly, pay for a static ip address or secondly, set up a free DDNS account and let it track any 

http://portforward.com/english/routers/port_forwarding/TP-Link/TD-W8960N/defaultguide.htm


Utility Watch Ray Shannon 
 

11 
 

changes to my public address. The router provided options for a free DDNS account and it listed the 

companies providing the service. 

 

 

Fig. 6 dynamic DNS configuration page 

Once the account was setup and domain name selected, the router gave confirmation of details. 

 Other rules were created on the router to allow ftp, telnet and winscp to access the board. 

These applications have specific ports assigned to them and it was a matter of repeating the process of 

pointing the router at the Galileo ip for these designated ports. Figure 2 displays the ports being open 

and enabled. 

 

 

 

4. 3rd Party Hardware 
 In order for the Utility Watch to be able to interrogate the electricity meter, a 3rd party hardware 

would be required. This would consist of a transmitter, a clamp and remote relays. The clamp device 

would have to be clamped around the property mains supply and by some method transmit the data for 



Utility Watch Ray Shannon 
 

12 
 

capture. All of the hardware I looked at were mainly wireless (RF) applications and reported the 

information back to a receiver. 

   There were many companies offering the full product to setup a monitoring system, but very 

few offered individual parts to allow a system to be designed. Sailwider sold hardware separately and 

customers could select which equipment they wanted.  

 This is the transmitter (Gateway) which communicates with the sensors and relays. 

 

Fig. 7 Energy Transmitter 

 This is an RF switch which receives commands from the transmitter 

 

Fig. 8 RF switch 

 This is an RF Socket which receives commands from the transmitter. 



Utility Watch Ray Shannon 
 

13 
 

 

Fig. 8 RF Socket 

 

4.1. Network analysis for data packets  
 Once I acquired the necessary hardware, I started to investigate the operations of these devices. 

I had the system installed in my home and begun to monitor the network activity being generated by 

the system. I used Fiddler7, a network analysis tool, for sniffing packets which were being sent between 

transmitter and receivers giving me the information I needed as shown in fig 9. 

 

Fig. 9 Fiddler Network Analysis Tool 



Utility Watch Ray Shannon 
 

14 
 

  Shown below, is a test script I created to listen out for data packets being sent to the Galileo 

from the transmitter on port 5555. I captured that data and stored it in a local database to interpret 

what was in the packet. 

import socket 

import sqlite3 

from time import gmtime, strftime 

 

def Main(): 

 HOST='192.168.1.199' 

 PORT = 5555 

 

 s = socket.socket() 

 s.bind((HOST,PORT)) 

 s.listen(1) 

 

 print("listening for raw data.....") 

 c,addr = s.accept() 

 print("Connection from: " + str(addr)) 

 data = "" 

 while True: 

  data = c.recv(10000) 

  connection = sqlite3.connect('utilitywatch.db') 

  queryCursor = connection.cursor() 

  sql =  """ INSERT INTO RAWDATA(rawdata) VALUES(?)""" 

  queryCursor.execute(sql, (data,)) 

  connection.commit() 

 

  timestamp = strftime("%H:%M:%S %d-%m-%Y ", gmtime()) 

  print(timestamp) 

  print(len(data)) 

 

  if not data: 

   connection.close() 

   break 

 c.close() 

if __name__ == '__main__': 

 Main() 

 

 

 

The following is the response generated on execution of the test code. 
 

<response> 

<id_1>0000281B</id_1><pow_1>85w</pow_1><temp_1>---</temp_1><state_1>fixed</state_1> 

<id_2>--</id_2><pow_2></pow_2><temp_2></temp_2><state_2>fixed</state_2> 

<id_3>--</id_3><pow_3></pow_3><temp_3></temp_3><state_3>fixed</state_3> 

<id_4>--</id_4><pow_4></pow_4><temp_4></temp_4><state_4>fixed</state_4> 

<id_5>--</id_5><pow_5></pow_5><temp_5></temp_5><state_5>fixed</state_5> 

<id_6>--</id_6><pow_6></pow_6><temp_6></temp_6><state_6>fixed</state_6> 

<id_7>--</id_7><pow_7></pow_7><temp_7></temp_7><state_7>fixed</state_7> 

<id_8>--</id_8><pow_8></pow_8><temp_8></temp_8><state_8>fixed</state_8> 

<id_9>--</id_9><pow_9></pow_9><temp_9></temp_9><state_9>fixed</state_9> 

<id_10>--</id_10><pow_10></pow_10><temp_10></temp_10><state_10>fixed</state_10> 

</response> 

 

 The raw data detailed all the necessary information for the Utility Watch to generate 
informative graphs, tables and live detailed displays.  



Utility Watch Ray Shannon 
 

15 
 

4.2.  Network analysis for control packets 
 Further test code was required to replicate the control of the rf sensors and sockets. Again, the 
network analysis tool was employed to decipher the execution commands from the transmitter to the rf 
receiver devices. The following lines of code were created from what information was obtained during 
the network analysis process.  
 

1. conn = httplib.HTTPConnection('192.168.1.112') 
2. conn.request("GET", "/setsocket.xml?num=4&set=on&ran=2717") 

 

Line 1 establishes the connection to the transmitter and line 2 sends the GET request telling the 
transmitter which channel to apply the ‘turn on’ request. With the data reading code and now the 
control code established, all that remained was to parse the response into a format that could be used. 
 

 

 
Fig. 10 Fiddler displaying the control request. 

 

 

 

 

 

 



Utility Watch Ray Shannon 
 

16 
 

5. Required Software and Technologies 
 Various software packages and technologies were required to knit the whole project together. 

The majority of these I had not experienced before and required a lot of research and trial and error 

to obtain a level where I became proficient enough to complete the project.  

5.1.  Python 
 Python was the chosen development language for the backend program. I wanted to try a 

language I had not used before and it was part of the 4th year syllabus, so I could learn as I went 

along. Also, python was part of the linux image installed on the SD card obtained from Intel. It was 

version 2.7. I found the documentation 8 for python really useful and easy to follow. It gave sample 

code to compliment the topic being discussed, which helped with explaining the topic.  

5.2.  Flask 
 Flask is a microframework for Python based on Werkzeug and Jinja 29. It provides the web server 

functionality and a debugger for troubleshooting. Flask was executable in local and public mode. 

Changing the host address in app.run () to app.run (host= ‘0.0.0.0’) allowed other clients on the 

network to see the server. 

 The debug mode could also be turned on or off, by configuring the app.run () command to 

app.run (debug=True). This enables the Werkzeug application to give detailed feedback if the 

application crashes. Obviously, if the application is accessible to the public, this feature needs to be 

set to ‘False’. Again, the documentation was simple and gave good coded examples. 

5.3. Jinja2 
 Jinja2 is a Python library used to generate documents based on one or more predefined 

templates10. Any variables passed into the html code from the python application could be 

referenced and retrieved using this templating schema. Here is a sample of the code used in a 

javascript block in an html file. 

   <script> 

    var chart_id = {{ chartID|safe }} 

    var credits = {{ credits|safe }} 

    var series = {{ series|safe }} 

    var title = {{ title|safe }} 

    var xAxis = {{ xAxis|safe }} 

    var yAxis = {{ yAxis|safe }} 

    var chart = {{ chart|safe }} 

   </script> 

 
The code with the braces contains the variables passed in from the python program.  
 
 



Utility Watch Ray Shannon 
 

17 
 

5.4. JQuery 
 JQuery is a javascript library that works across many web browsers. It was employed in the 

project for rendering the data charts, HTML document traversal and manipulation and event 

handling. It also assisted with AJAX request for updating live gauges. It has an extensive api11 with a 

modern look and feel code example section. It was one of the best and most user friendly api’s I 

used. 

5.5. AJAX 
 AJAX is the art of exchanging data with a server, and updating parts of a web page - without 

reloading the whole page,12 and that is exactly what it was used for. The Utility Watch requires both 

the temperature and live meter gauge to be updated as soon as any change occurs without 

refreshing the full page. It is an old technology but was ideal for providing the functionality I needed. 

 

5.6.  SQLite 
 As the project had a lot of data being generated and manipulated, and the linux OS being 

restricted, there was a need for a light-weight database system. SQLite comes preinstalled with 

most python packages, but unfortunately not with this skeleton linux image. There was access to 

precompiled binaries from the SQLite website13, which installed quite easily and without any issues.  

 SQLite was ideal for the Utility Watch application in every way except one.  It had a limited write 

restriction of only one open connection to any database at any one time. There could be any 

amount of read connections, but only one write connection. This lead to multiple databases being 

created like tables would normally be. A database diagram will be available in the design document 

which will make it clearer. The test script for continuously writing to a database is shown below. 

import sqlite3 

 

def main(): 

    connection = sqlite3.connect('utilitywatch.db') 

    queryCursor = connection.cursor() 

    i=1 

    while True: 

        sql = ''' INSERT INTO test(VALUE) VALUES(?)''' 

        queryCursor.execute(sql, (i,)) 

        connection.commit() 

        i+= 1 

 

if __name__ == '__main__': 

 main() 

 

 Testing the SQLite involved running this program while having many reading programs access 
the same database. This was tested over a 5-hour period without any issues. As soon as another 
write program was started, the server crashed. Below is the code for the read program. 
 



Utility Watch Ray Shannon 
 

18 
 

import sqlite3 
from time import gmtime, strftime 
 
def main(): 
    connection = sqlite3.connect('utilitywatch.db') 
    queryCursor = connection.cursor() 
    i=1 
    timestamp1 = strftime("%H:%M:%S %d-%m-%Y ", gmtime()) 
    print("Start: ",timestamp1) 
    while True: 
        sql = ''' SELECT * FROM readingTbl''' 
        queryCursor.execute(sql) 
        the_data = queryCursor.fetchall() 
        connection.commit() 
        i+= 1 
        print((the_data[-1])) 
    connection.close() 
    timestamp2 = strftime("%H:%M:%S %d-%m-%Y ", gmtime()) 

    print("Start: ",timestamp1,"Finish: ",timestamp2) 
 
if __name__ == '__main__': 
 main() 

5.7.  MatplotLib vs HighCharts 
 When deciding on the best chart plotting library to use, I compared the python based matplotlib 

and JQuery based HighCharts. MatplotLib was very straight forward, with little complexity and 

offered a wide range of options with sample code. HighCharts was a bit more muddled with 

references to online API locations or javascripts and required a lot of dependencies to be added in 

order to function. It also had a large range of graphs to choose from and it looked very polished with 

added animation and user interaction. 

 I had chosen matplotlib initially, for its simplicity, and had sample code working locally. 

Unfortunately, upon deploying it to the Galileo, it wouldn’t work as some of the dependencies were 

not compatible with the python version on the board. Even though both versions of python were 

2.7, it was throwing compatibility errors.  

 HighCharts took a bit of work to get functioning. JavaScripts had to be copied into static folders 

and references made to these scripts in the html headers. This made the code look complex and 

messy. After many tutorials and trial and error, it eventually worked and looked impressive. Working 

with javascript took a little getting used to. 

 



Utility Watch Ray Shannon 
 

19 
 

5.8. Responsive Web Design 
 With mobile technology being a major platform of how we access the internet, it is vital we 

include smaller resolution devices such as phones or tablets when creating web apps. This means 

certain fluidity must be applied when designing the web pages.  

 Twitter Bootstrap 14 is a front end framework aimed at mobile technology. It contains defined 

stylesheets for html tags, tables and text. It also has javascript components in the form of JQuery 

adding more functionality relative to mobile platform. Like HighCharts, all the required CSS and 

javascript files need to be loaded into the header.  

 I have used bootstrap for some basic formatting but it added a lot of padded code around even 

the most basic html tags. It seemed a bit of overkill for what it was doing.  

 

5.9.  Git 
 Git 15 is a repository hosting service, a secure and efficient way of controlling source code and 

revision control. I found git very useful and with a few basic commands quickly became proficient 

with it. It involved setting up a local repository and initialising it. All files added locally could then be 

pushed up to the remote repository using add, commit and push commands. It also offered a 

rollback option if a previous version of any file was required. Any project created nowadays would 

have some form of source control, and git would be the most popular. 

6. Appendix 
 

These steps have been obtained from https://learn.sparkfun.com/tutorials/galileo-getting-started-guide 

as stated in the references. 

https://learn.sparkfun.com/tutorials/galileo-getting-started-guide


Utility Watch Ray Shannon 
 

20 
 

Galileo Gen1 Win 7 Setup 

Preparation  

1. Download Arduino software and Linux Galileo SD image from 

https://communities.intel.com/docs/DOC-22226 and Unzip to folder of choice.

 
 

2. Format your SD Card by using windows 7 Quick Format. 

 

 

 

 

 

 

 

 

3. Download latest version of Tera Term. A terminal emulator to view Galileo’s SD card. 

https://communities.intel.com/docs/DOC-22226


Utility Watch Ray Shannon 
 

21 
 

Galileo initial setup and testing 

1. Connect power supply to Galileo board. 

2. Connect USB on computer to micro USB client on Galileo board. 

3. Open Windows Device Manager (Win+Pause  -> Device Manager) 

4. Expand  Other devices find Gadget Serial v2.4 and right click, then left click Update Driver 

Software  

 
5. Then select Browse my Computer for driver software 

6. Change Location to folder you unzipped Arduino and press Next. 

 

 

 

 

 

 

 

 

 

7. Start andruino.exe.                                                                                                                                                                                                           

8. On the Arduino menu bar go to Tools >  Board and select Intel Galileo. 



Utility Watch Ray Shannon 
 

22 
 

9. On the Arduino menu bar go to Tools > Serial Port and select Com 3. The Com port that was 

setup during driver Installation.  

 

 

 

 

 

 

 

 

 

 

10. On the Arduino menu bar go to File > Examples > Basics and select Blink. This program will make 

a led blink on your Galileo board. 

11. Select Upload. This will compile the program (which may take up to 30secs) and then run on the 

Galileo board. Communications are now set up. 

 

 

 

 

 

 

 

 

 

 

 



Utility Watch Ray Shannon 
 

23 
 

Linux image on Galileo SD card setup and testing 
Connection will be done using a R424 Ethernet cable  

1. Copy downloaded image on to the formatted SD card. This is all that should be on the card. 

 
2.  Open the grub.conf file in boot > grub > grub.conf in your text editor. This will need to 

be altered in order to avoid conflict at boot time by only leaving in references to the SD card. 

See changes below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Utility Watch Ray Shannon 
 

24 
 

3. Disconnect the power supply from the Galileo board and insert SD card. 

4. Reconnect power supply to the Galileo board. 

5. Connect Ethernet cable from Galileo board to PC. 

6. Open cmd.exe on Windows and type ipconfig. You can then check that the default IP address of 

169.254.*.* with a subnet mask of 255.255.0.0 is issued. 

7. Next the IP Address on the Ethernet port on the Galileo board must be statically set. Create a 

new file with the Arduino editor and write in the program as below. Then upload. Remember 

the Arduino editor is still communicating through the USB on COM 3. 

8. Open Tera Term and on the menu bar go to File > New connection and copy the settings below 

and click OK. 

 



Utility Watch Ray Shannon 
 

25 
 

9. Open Tera Term and on the menu bar go to File > New connection and copy the settings below 

and click OK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. A SSH Authentication window should open as below. Type in root as Username 



Utility Watch Ray Shannon 
 

26 
 

 
 

11. A Tera Term Console will open in the user home directory. 

 

12. Change to the root directory and get a listing of all the folders 



Utility Watch Ray Shannon 
 

27 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13. Check Python version and run some commands on the Python Shell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Utility Watch Ray Shannon 
 

28 
 

6. References 
                                                           
1 Energy Monitoring (2014) - retrieved from theowl.com dated 23/10/2014 
 
2 e2 Classic. (2014) -retrieved from http://efergy.com/uk/e2-classic-2-0 dated 23/10/2014 
 
3 Product Brief (13th December 2013) - retrieved from 
http://download.intel.com/support/galileo/sb/galileoprodbrief_329680_003.pdf dated 21/10/2014 
 
4 Examples - Basics (2014) - retrieved from  
http://arduino.cc/en/Tutorial/Blink?from=Tutorial.BlinkingLED dated 23/10/2014 
 
5 Galileo Getting Started Guide - retrieved from  https://learn.sparkfun.com/tutorials/galileo-getting-
started-guide  dated 21/10/2014 
 
6 How to Port Forward your router (2014) – retrieved from 
http://portforward.com/english/routers/port_forwarding/ dated 2/11/2014 
 
7 The free web debugging proxy for any browser, system or platform (2002-2014) – Retrieved from 
http://www.telerik.com/fiddler dated 2/11/2014 
 
8 What’s new in Python 2.7 (1990-2014) – retrieved from https://docs.python.org/2/whatsnew/2.7.html 
dated 14/10/2014 
 
9 Flask is Fun (2014-Armin Ronacher) – retrieved from http://flask.pocoo.org/  dated 15/10/2014 

10 A quick start guide to using Jinja2 Template Engine (2010-2012 Bryan Hill) – retrieved from 
http://kagerato.net/articles/software/libraries/jinja-quickstart.html dated 23/10/2014 
 
11 JQuery API – retrieved from http://api.jquery.com/ dated 5/02/2015 

12 AJAX Tutorial – retrieved from http://www.w3schools.com/ajax/ dated 30/03/2014 
 
13 SQLite Download Page – retrieved from http://www.sqlite.org/download.html dated 03/11/2014 
 
14 An overview of Bootstrap, how to download and use, basic templates and examples, and more – 
retrieved from http://getbootstrap.com/getting-started/ dated 28/12/2014 
 
15 Downloading Git – retrieved from http://git-scm.com/download/win 27/11/2014 
 

http://download.intel.com/support/galileo/sb/galileoprodbrief_329680_003.pdf
http://arduino.cc/en/Tutorial/Blink?from=Tutorial.BlinkingLED
https://learn.sparkfun.com/tutorials/galileo-getting-started-guide
https://learn.sparkfun.com/tutorials/galileo-getting-started-guide
http://portforward.com/english/routers/port_forwarding/
http://www.telerik.com/fiddler
http://flask.pocoo.org/
http://kagerato.net/articles/software/libraries/jinja-quickstart.html
http://api.jquery.com/
http://www.w3schools.com/ajax/
http://www.sqlite.org/download.html
http://getbootstrap.com/getting-started/
http://git-scm.com/download/win

