

Institute of Technology, Carlow

B.Sc (Honour) in Software Engineering
Project Specification

For
MISRA C Code Compliance Checker Project

Student Name: Mingjun Zhou

Student ID: C00094981

Supervisor: Dr. Christophe Meudec

Date: 11/12/2009

Table of Content
Vision..3

Revision History ...3
Introduction...3
Positioning ..3

Business opportunity...3
Problem Statement ..3
Tool Position Statement ..3

Stakeholder Descriptions and Goals ...4
Stakeholder summary..4
User summary ...4
Key High-Level Goals and Problems of the Stakeholder ...4
User-Level Goals ..4
User Environment ...4

Tool overview ...5
Summary of Benefits ..5
Assumptions and Dependencies..5
Cost and Pricing ..5
Licensing and Installation ...5

Summary of System Features..5
Supplementary specification ..6

Revision History ...6
Introduction...6
Functionality ...6

Logging and Error Handling ...6
Usability..6
Reliability..6
Performance ..6
Supportability..7
Implementation Constraints ..7
Purchased Components ...7
Free Open Source Components...7
Interfaces...7
Legal Issues...7

Use cases...8
Use Case Diagram...8

Output to be produced example ..9
MISRA rules categories and examples..10

Categories ...10
Example of Rules: [1] ...10

Evolutionary approach [1] ... 11
Version 1, ..11
Version 2 ...13

Reference ...13

Project Specification Mingjun Zhou 2

Vision

Revision History

Version Date Description Author
Inception draft 11/12/2009 First draft. To be refined primarily

during elaboration.
Mingjun Zhou

Introduction

I envision an MISRA C code compliance checker tool that will check if the C source code
following the guideline which provided by MISRA C. This tool will help the program developers
automatically checking their code and guide them to keep the good coding style. The

Positioning

Business opportunity

Most existing MISRA C code checkers are well developed, and functional. But some of them are
seems a little complex before getting into it. I think that’s not suits for beginner. My tool is going
to be small, simple and concentrate on MISRA C-1998. If there are some program developers in
beginner level and they want to build up programming style in good practice or people who is
looking for a tool for checking C source code for small safety-relative project program, my tool
will be their choice.

Problem Statement

For its own advantages, the C programming language is widely used in real-time embedded and
safety-critical application field especially in motor vehicle. At the same time when the
programming style of C gives programmer the full of flexibility, there is another problem become
more obvious. The misunderstanding of code could cause serious problem in safety-related
requirement, even could cost life.

Tool Position Statement

This tool I aim to make is targeted for the person who is responsible for making a C program for
safety-relative industry. And also for those program developers who is going to study and check

Project Specification Mingjun Zhou 3

their programming style in good way. The differentiates of this tool with other existing static code
checking tool are:

 Independent
 Focus on MISRA C guideline
 Easy to implement
 Good and easy to read feedback information

Stakeholder Descriptions and Goals

Stakeholder summary

The main stakeholders involved in this system are the owners of the industry which must deal with
safety-relative requirement for their product. For example, motor industry, unclear station, aircraft
industry, etc. And the application development organizations will also be involved.

User summary

C language program developer

Key High-Level Goals and Problems of the Stakeholder

High-Level Goal Priority Problems and Concerns Current Solutions
Fully check C
source code, fast,
precise, reliable,
verify, valid

Very high Programmer makes mistakes
 Programmer misunderstands

the language
 The compiler doesn’t do what

the programmer expects
 The compiler contains errors
 Run-time errors

 Existing static
code analysis
tools

 Compilers

User-Level Goals

The programmers need a tool can check their C source code and fast give them a feedback
information which tell them the exactly part of code against the MISRA C guidelines.

User Environment

Command line prompt in Windows Operating System.

Project Specification Mingjun Zhou 4

Tool overview

Summary of Benefits

Supporting Feature Stakeholder Benefit
Technically, this tool will provide the main
function to check C source code base on
MIRSA C-1998 guideline, and gives properly
feedback so that the program developer can
make good program.

Get more reliable program for their own
purpose.

Error capture and report Easy to target the location of error
Easy to understand the error

Assumptions and Dependencies

The code is syntactically correct and actually compiles

Cost and Pricing

Copyright to ITCarlow

Licensing and Installation

??

Summary of System Features

 Error detects
 Feedback function (give error or warning message)

Project Specification Mingjun Zhou 5

Supplementary specification

Revision History

Version Date Description Author
Inception draft 11/12/2009 First draft. To be refined primarily

during elaboration.
Mingjun Zhou

Introduction

This document is the repository of all MISRA C code compliance checker requirements not
captured in the use cases.

Functionality

Logging and Error Handling

Log all executing errors to persistent storage.

Usability

The feedback information should be clear and fully detailed in order to guide user to find the error
and correct them.
Help information should be easy to understand and can call it straightforward.
Fast process speed.
Command line prompt tool

Reliability

Recoverability
If there is a failure to check source code
All the feedback information should be given correctly.

Performance

Fast processing speed is very important.
For example:

Project Specification Mingjun Zhou 6

If the code is around 100 lines, processing speed would be a few seconds.
If it greater than 1000 lines, the processing could be around 1 minute.

Supportability

Adaptability: All the rules will be defined in different class or file. The new rules can be added by
adding more class or rules files

Configurability: The user and specify which rule they are going to apply

Implementation Constraints

ANTLR
JAVA Language

Purchased Components

None

Free Open Source Components

ANTLRworks 1.3
Netbeans IDE 6.7.1

Interfaces

Noteworthy Hardware and Interfaces
 Command line prompt

Software Interfaces
Windows Operating System

Legal Issues

Open source components is be licensed and free to user.

Project Specification Mingjun Zhou 7

Use cases

Use case: Analyse Code

Actor: User

Action: The code checker analyses the incoming course code base
on the built in mechanism.

Use Case Diagram

Most existing MISRA C code checkers are well developed, and functional. But some of them are
seems a little complex before getting into it. I think that’s not suits for beginner. My tool is going
to be small, simple and concentrate on MISRA C-1998. If there are some program developers in
beginner level and they want to build up programming style in good practice or people who is
looking for a tool for checking C source code for small safety-relative project program, my tool
will be their choice.

Use Case UC1: Analyse Code
Scope: MISRA C Compliance Code Checker
Level：
Primary actor: User
Stakeholders and interests:

 User: wants to check if any parts of their written code have errors against MISRA C-1998
Guidelines, gets feedback information to find out the exactly location, and the code against
which rule, etc.

 System: wants to locate C source code from user’s input command. Get correct file and data
stream, gives it to ANTLR for analysing.

 ANTLR: wants to analyse the source code and parse it.
Preconditions:

 User type in right command, and link with correct C source code.

Project Specification Mingjun Zhou 8

 ANTLR has C Standard grammar file and has its construction by lexering and parsing.
Success Guarantee: Feedback information output correctly.
Main Success Scenario:
1. Input C source code system
2. The system analyse the source code stream
3. Compare its construction with MISRA C 1998 guidelines, user can have option to indicate

which rules to apply
4. Output the feedback information on the screen and in a text file.
Extension:
1a. The C source code location is incorrect

a. The system gives error message to inform user check path

1b. the input file is not a C source code.

a. The system gives error message to inform user check file type

Output to be produced example

Example code:
Test.c

void func(void);

void func(void)

{

 int i=0;

while(i<10) {

 i++;

if (i == 5) {

break;

}

}
}

Message Format:
Error: [FileName.c] [line number: ???] against MISRA (rule-number) {message}
Warning: [FileName.c] [line number: ???] against MISRA (rule-number) {message}

Output should look most likely as:

Error: [c:\test.c] [line number: 8] against MISRA (58) {'break' statement shall not be used (except
in a 'switch')}

Project Specification Mingjun Zhou 9

MISRA rules categories and examples

Categories

There are 17 categories in MISRA C, as following:

 Environment
 Character Sets
 Comments
 Identifiers
 Types
 Constants
 Declarations and Definitions
 Initialisation
 Operators
 Conversions
 Expressions
 Control Flow
 Functions
 Pre-processing Directives
 Pointers and arrays
 Structures and Unions
 Standard Libraries`

Example of Rules: [1]

Rule 33 (required): The right hand operand of a && or || operator shall not
contain side effects.

There are some situations in C code where certain parts of expressions may not be
evaluated. If these sub-expressions contain side effects then those side effects may or
may not occur, depending on the values of other sub expressions. The operators which
can lead to this problem are &&, || and ?:. In the case of the first two (logical
operators) the evaluation of the right-hand operand is conditional on the value of the
left hand operand. In the case of the ?: operator, either the second or third operands
are evaluated but not both. The conditional evaluation of the right hand operand of
one of the logical operators can easily cause problems if the programmer relies on a
side effect occurring. The ?: operator is specifically provided to choose between two
sub-expressions, and is therefore less likely to lead to mistakes.

For example:
if (ishigh && (x == i++)) /* Incorrect */

Project Specification Mingjun Zhou 10

if (ishigh && (x == f(x))) /* Only acceptable if f(x) is known to

have no side effects */

Rule 49 (advisory): Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean

Where a data value is to be tested against zero then the test should be made explicit.
The exception to this rule is data which is representing a Boolean value, even though
in C this will, in practice, be an integer. This rule is in the interests of clarity, and
makes clear the distinction between integers and logical values.

For example, if x is an integer, then:
if (x != 0) /* Correct way of testing x is non-zero */

if (x) /* Incorrect, unless x is effectively Boolean data

(e.g. a flag) */

Rule 50 (required): Floating point variables shall not be tested for exact

equality or inequality.
The inherent nature of floating point types is such that comparisons of equality will
often not evaluate to true even when they are expected to. In addition the behaviour of
such a comparison cannot be predicted before execution, and may well vary from one
implementation to another. For example the result of the test in the following code is
unpredictable:

F_32 x, y; /* some calculations in here */

if (x == y)

{ /* ... */ }

Evolutionary approach [1]

Version 1,

Since there still a lot to study, I attempt to implement some simple “required” rules
first to make a try. For example:

Rule 9: Comments shall not be nested.
C does not support the nesting of comments. After a /* begins a comment, the
comment continues until the first */ is encountered, with no regard for any nesting
which has been attempted.

Rule 14: The type char shall always be declared as unsigned char or signed char.
The type char may be implemented as a signed or an unsigned type depending on the
compiler. Rather than making any assumptions about the compiler, it is preferable

Project Specification Mingjun Zhou 11

(and more portable) to always specify whether the required use of char is signed or
unsigned.

Rule 119: The error indicator errno shall not be used.
errno is a facility of C which in theory should be useful, but which in practice is
poorly defined by the standard. As a result it shall not be used. Even for those
functions for which the behaviour of errno is well defined, it is preferable to check the
values of inputs before calling the function rather than rely on using errno to trap
errors

Rule120: The macro offsetof, in library <stddef.h>, shall not be used.
Use of this macro can lead to undefined behaviour when the types of the operands are
incompatible or when bit fields are used.

Rule 121: <locale.h> and the setlocale function shall not be used.
This means that the locale shall not be changed from the standard C locale.

Rule 122: The setjmp macro and the longjmp function shall not be used.
setjmp and longjmp allow the normal function call mechanisms to be bypassed, and
shall not be used.

Rule123: Rule 123 (required): The signal handling facilities of <signal.h> shall

not be used.
Signal handling contains implementation-defined and undefined behaviour.

Rule 124: The input/output library <stdio.h> shall not be used in production

code.
This includes file and I/O functions fgetpos, fopen, ftell, gets, perror, remove, rename,
and ungetc. If any of the features of stdio.h need to be used in production code, then
the issues associated with the feature need to be understood.

Rule 125: The library functions atof, atoi and atol from library <stdlib.h> shall

not be used.
These functions have undefined behaviour associated with them when the string
cannot be converted. They are unlikely to be required in an embedded system.

Rule 126: The library functions abort, exit, getenv and system from library

<stdlib.h> shall not be used.
These functions will not normally be required in an embedded system, which does not
normally need to communicate with an environment. If the functions are found
necessary in an application, then it is essential to check on the
implementation-defined behaviour of the function in the environment in question.

Rule 127: The time handling functions of library <time.h> shall not be used.

Project Specification Mingjun Zhou 12

Project Specification Mingjun Zhou 13

Includes time, strftime. This library is associated with clock times. Various aspects are
implementation dependent or unspecified, such as the formats of times. If any of the
facilities of time.h are used then the exact implementation for the compiler being used
must be determined.

Version 2

Depends on how version 1 goes, I will add on more complicated rules on. For
instance:
Rule 11: Identifiers (internal and external) shall not rely on significance of more

than 31 characters. Furthermore the compiler/linker shall be checked
to ensure that 31 character significance and case sensitivity are
supported for external identifiers.

The main purpose of this rule is to ensure that code can be ported between the
majority of compilers/linkers without requiring modification (shortening) of
parameter names.

Rule 17: typedef names shall not be reused.
Once a name has been assigned as a typedef it should not be used for any other
purpose in any of the code files.

Rule 20: All object and function identifiers shall be declared before use.
Identifiers which represent objects or functions shall always have been declared
before they are used, either by a declaration in the code file, or in an included header
file.
Rule 21: Identifiers in an inner scope shall not use the same name as an identifier

in an outer scope, and therefore hide that identifier.
Hiding identifiers with an identifier of the same name in a nested scope leads to code
which is very confusing. For example:
SI_16 i;

{

SI_16 i; /* This is a different variable */

/* This is not permitted */

i = 3; /* It could be confusing as to which i this refers */

}

Reference

[1]Section 7: Rules, The Motor Industry Software Reliability Association, Guidelines
For the Use Of The C Language In Vehicle Based Software, April 1998

	Vision
	Revision History
	Introduction
	Positioning
	Business opportunity
	Problem Statement
	Tool Position Statement

	Stakeholder Descriptions and Goals
	Stakeholder summary
	User summary
	Key High-Level Goals and Problems of the Stakeholder
	User-Level Goals
	User Environment

	Tool overview
	Summary of Benefits
	Assumptions and Dependencies
	Cost and Pricing
	Licensing and Installation

	Summary of System Features

	Supplementary specification
	Revision History
	Introduction
	Functionality
	Logging and Error Handling

	Usability
	Reliability
	Performance
	Supportability
	Implementation Constraints
	Purchased Components
	Free Open Source Components
	Interfaces
	Legal Issues

	Use cases
	Use Case Diagram

	Output to be produced example
	MISRA rules categories and examples
	Categories
	Example of Rules: [1]

	Evolutionary approach [1]
	Version 1,
	Version 2

	Reference

