
Design Manual:

Code Editing in the Cloud

Author:

Alejandro Borrego Delgado (C00132731)

Final Project,

4th Bach (Honours) in Software Engineering

IT Carlow, 2009/2010

1



INDEX:

1. Introduction........................................................................................3

2. Domain model....................................................................................4

3. System sequence diagrams.................................................................5

4. Lexer...................................................................................................11

5. Class Diagram.....................................................................................18

2



1. Introduction:

This is the final design for our application. This version on the design have evolved from

the first version, by completing it with new functionalities and improving already designed

parts to end with a  better design for our  application. The process is simple,  iteration after

iteration  with  new implementation,  tests,  etc.  the  design  have  been  shown  that  could  be

improved and a change in the design was necessary to keep the approach used as agile as

possible.

3



2. Domain Model:

Seeing the diagram, we can understand that there is 3 basic operations. Manage users,

manage files, and manage projects. 

4



3. System Sequence Diagrams

3.1. CRUD Project

5



3.2. CRUD File

6



3.3. Export Project

7



3.4. Export File

8



3.5. Manage users

9



3.6. Log-in

10



4. Lexer:

To implement the code highlighter, we need a lexer.

A lexer is an automaton that recognise a stream and divide it in tokens according to their

type.

The automaton is a very big one, so in this documents it have been divide in parts,

generating the automatons from regular expressions with the �NFA - DFA Generator� a

program implemented for another subject in this course but that have been improved so it will

fits the specifications to generate the automaton for this project.

11



The Regular expression is:

/* (~[\*]|\*~[/])* \*/ | 

//~[\n]*\n 

abstract | 

boolean | 

break | 

byte | 

case | 

catch | 

char | 

class | 

const | 

continue | 

default | 

do | 

double | 

else | 

extends | 

final | 

finally | 

float | 

for | 

goto | 

if | 

implements | 

12



import | 

instanceof | 

int | 

interface | 

long | 

native | 

new | 

package | 

private | 

protected | 

public | 

return | 

short | 

static | 

strictfp | 

super | 

switch | 

synchronized | 

this | 

throw | 

throws | 

transient| 

try | 

void | 

volatile | 

while | 

13



wesureal | 

true | 

false | 

null | 

[1-9][0-9]* | 

0x[0-9A-Fa-f]* | 

0[0-7]* | 

[1-9][0-9]*.[0-9]* | 

; | 

. | 

, | 

\( | 

\) | 

{ | 

} | 

\[ | 

\] | 

"(~["]|\\")*" | 

'(~[']|\\')*'

14



The Automatons generated are:

To recognise reserve words:

15



To recognise strings:

To recognise Numbers:

16



To recognise Comments:

Other important symbols:

17



5. Class Diagram:

This is the class diagram for the main application. Evolved from a basic class diagram

this version shows a design class diagram for the full application. Functionalities from a 3rd

party library (Authlogic) [*] is being used, for more information about the Authlogic library

please refer to the final report. It has also been provided a class diagram for the Lexer

functionalities, which will be called with in the implementation. See reference for further

documentation.

The project is implemented under Ruby On Rails technology. Ruby on rails follows the

MVC (Model View Controller) structure. As built-in functionalities for managing the Model

and Views are already on Ruby On Rails, no further implementation is needed.

[*] http://rdoc.info/projects/binarylogic/authlogic, Authlogic Documentation page

18



19


