
JUnit Test Generator 13/04/10 Design Manual

Design Manual
JUnit Test Generator

I.T. Carlow
Software Engineering

Bachelor Degree (With Honours)

Sergio Alcocer Vázquez
C00132732

1/15

JUnit Test Generator 13/04/10 Design Manual

Table of Contents
1. Introduction..3
2. Decisions made – reasons...4

2.1. Why a hand-made parser?...4
2.2. Why a hand-made Graphical User Interface?...4

3. The parsing...5
3.1. Lexical analysis...5
3.2. Syntax Analysis...6

4. GUI...8
4.1. Main Screen..8
4.2. Object Creation...9
4.3. Instruction Creation..9
4.4. Method Creation...9
4.5. Constructor Creation...9

5. Class Diagrams...10
5.1. Analyzer..10
5.2. Abstract Syntax Tree...11
5.3. Filters..12
5.4. Generator..13
5.5. GUI...14
5.6. Skeleton..14
5.7. Randomizer...15

Final Note...15

2/15

JUnit Test Generator 13/04/10 Design Manual

1. Introduction

This is the Design manual of the JUnit Test Generator. In this document is
displayed some of the reasons of some decisions made, explain briefly the structure
of the Parser, including the Tokens used, the grammar, etc. To help understanding,
there are some class diagrams.

A simple overview of the application would be as shown in the following
image

3/15

JUnit Test Generator 13/04/10 Design Manual

2. Decisions made – reasons

As in any other project, several decisions have to be made. For this project,
the first decision was to choose JUnit from all the XUnit frameworks (PyUnit, Cunit,
etc) The main reasons for this choice were that the project was open in this area,
and that the developers felt more comfortable with Java than with any other
language, being platform free an added value.

Once this choice was made, the language to code the application was easy
to choose, Java. There are several reasons to choose Java within the rest. First of
all, it is the language used in JUnit. How that is an advantage?. Easy. It doesn't
require the user to install any other osftware. If is able to make a program in Java,
one of the first things he should worry about is to have JDK installed. Then, no
further installs are needed to run our application. If instead of Java we chose C, for
example, the user must be aware of the libraries used for the applications that are
not included, the operating system and processor's bits to compile the sources,
what implies that the user may need to install things he/she doesn't want for
anything else.

It has been decided to use a hand-made parser and a Graphical User
Interface. It might look as a waste of time to code all this stuff, but is not totally true.

2.1. Why a hand-made parser?

As long as parser generators might include general purpose code and
need to define the grammar and the tokens, there is a little step left to make
to have a hand-made one. And if any problem occurs, it would be easier to
track-it.

2.2. Why a hand-made Graphical User Interface?

Once you have some experience coding GUI, create it is straight
forward, a bit long, but just that. It is possible to save time coding by-hand,
because Drag-n-Drop tools usually includes unnecessary code that changes
the layout of the whole Frame, forcing the developers to waste time fixing the
mess made. In the other hand, if you code it, you don't have that problem
(you only add the code you need).

4/15

JUnit Test Generator 13/04/10 Design Manual

3. The parsing

The project has been split into two different, but complementary phases.

3.1. Lexical analysis

The aim of the lexical analysis is to translate form single characters, to
Tokens, that has a real meaning. For this program, the Tokens used are the
following:

• EOF
• IMPORT
• PACKAGE
• VALUE
• SC
• PUBLIC
• PRIVATE
• PROTECTED
• ABSTRACT
• STATIC
• FINAL
• OPEN_CURLY
• CLOSE_CURLY
• CLASS
• OPEN_BRACK
• CLOSE_BRACK

5/15

JUnit Test Generator 13/04/10 Design Manual

3.2. Syntax Analysis

The aim of the syntax analysis is to check if the tokens that forms the
file are placed in the correct order. For example, there should be the same
amount of OPEN_CURLY as CLOSE_CURLY.

To be able to do this, the following grammar has been used.

Note: the Production MethodBody is not displayed in the grammar
because is a Token Burner, that burns until it gets the same number of
CLOSE_CURLY as OPEN_CURLY.

6/15

JUnit Test Generator 13/04/10 Design Manual

File → Package Imports Class

Package → PACKAGE VALUE SC
Package → ^

Imports → IMPORT VALUE SC
Imports → ^

Class → ClassModifier CLASS VALUE OPEN_CURLY ClassBody CLOSE_CURLY

ClassModifier → PUBLIC
ClassModifier → ^

ClassBody → Access VALUE ClassBody2 ClassBody

ClassBody → ^

ClassBody2 → ClassBody3

ClassBody2 → VALUE ClassBody3

ClassBody3 → SC
ClassBody3 → OPEN_BRACK Params CLOSE_BRACK OPEN_CURLY BodyMethod CLOSE_CURLY

Params → VALUE VALUE Params

Params → ^

Access → PRIVATE
Access → PUBLIC

7/15

JUnit Test Generator 13/04/10 Design Manual

4. GUI

The Graphical User Interface is how the user interacts with the application. It is
made by four different Screens.

4.1. Main Screen

1 – Is the menu. This menu will change with the available options
on each moment

2 – Is the methods and constructors view. In here is where all the
methods and constructors are shown.

3 – Actions and Objects view. In here is where all the Instructions
(either assert or customized) and the objects created would be displayed.

8/15

JUnit Test Generator 13/04/10 Design Manual

4.2. Object Creation

4.3. Instruction Creation

4.4. Method Creation

4.5. Constructor Creation

9/15

JUnit Test Generator 13/04/10 Design Manual

5. Class Diagrams

5.1. Analyzer

Notes:

– In TokenConstants there are more tokens than the ones used, but they
could be used in future releases

– FileLoader is a class that simplifies the way to move through a file,
allowing to get the next character, go back if needed and count the line
and the row of the characters.

– Lexer gets tokens.

– Token has all the information needed of a certain token.

10/15

JUnit Test Generator 13/04/10 Design Manual

5.2. Abstract Syntax Tree

Notes:
– File only allows storing a single class per file
– Method provides a class to store methods information and also

constructors.

11/15

JUnit Test Generator 13/04/10 Design Manual

5.3. Filters

Note:

– This classes are needed to filter files in the JfileChooser

12/15

JUnit Test Generator 13/04/10 Design Manual

5.4. Generator

Notes:
– TestInfo stores:

– an array of ObjectCreated
– an array of imports
– the test package
– the class name
– a dictionary of protype → Array of instructions

– TestInfo is the one that generates the Test file.
– Custom and Assert are the two kinds of instructions.

13/15

JUnit Test Generator 13/04/10 Design Manual

5.5. GUI

Notes:
– These are the user interfaces.
– CreateMethodConstructorUI provides two different and similar

interfaces.
– MainFrame.unlock() unlocks the frame once a sub-frame has been

closed.

5.6. Skeleton

Note:
– SkeletonMaker has all the information needed to create the skeleton of

the class:
– Array of methods and imports
– Class package and class name

14/15

JUnit Test Generator 13/04/10 Design Manual

5.7. Randomizer

Note:
– Randomizer is a class that should be filled by the developer. In its bare

version, it only has two methods:
– getInstance() → static, in order to get a single instance
– getRandom(String) → would call other functions created by the

developer.

Final Note:

For more information about the classes and
ints functionalities, please read the JavaDoc.

15/15

