
Junit Test Generator 13/04/10 Project Report

Project Report

JUnit Test Generator

I.T. Carlow

Software Engineering

Bachelor Degree (With Honours)

Sergio Alcocer Vázquez

C00132732

1/18

Junit Test Generator 13/04/10 Project Report

Table of Contents
1. Introduction...3

2. Original Idea..4

3. Current Application...5

3.1. Lexer..5

3.2. Parser...6

3.3. User Interface..6

3.3.1. JUnit Test Mode..7

3.3.2. Skeleton Mode...7

3.4. Randomizer <external project>..8

3.5. Test Generator (file generator)...8

3.6. Load/Save System...9

4. Original Idea VS Product...10

5. What is left..11

6. Problems Found...12

6.1. The client doesn't know what he wants..12

6.2. Agile Methodology and Refactoring..13

6.3. Information Storage...13

6.4. Loss of the project...14

6.5. Using methods through Strings..14

7. What would I do different..15

8. What have I learned...16

9. Conclusions...17

10. References...18

2/18

Junit Test Generator 13/04/10 Project Report

1. Introduction

The JUnit Test Generator with Human Oracle (from now on, “the
application”) is a tool that helps developers to create JUnit Tests, providing a
graphical interface that displays all the methods' information, allowing to
associate instructions to test each method, create objects to use in the tests
following the constructors. It is written in Java and delivered as a jar file and
some other files (images and another Jar file that provides the randomization.

The aim of this document is to have a review of the following points:

• What was the first idea of the application.

• Which are the differences between the original product idea and
the result

• What work is already done

• What work is left, tips to future developers, some suggestions
about additional functionality

• Problems found.

• What would I do differently if I had to start over again.

• What have I learned

• Conclusion

3/18

Junit Test Generator 13/04/10 Project Report

2. Original Idea

Nowadays it is common for developers to create software. As almost all
the simple applications are already created, it is required to create
applications that would be more complex. Would do more things and, of
course, help and reduce the amount of work that humans have to do.

In order to create complex software, it is needed to use modules.
Modules that the programmer would have to code (not always) and put all of
them together. Once they start to combine with each other (some function of
one module is called, and the information retrieved is used by another
function, etc.), is when the problems could appear.

The aim of this software was to allow to create JUnit Tests
automatically in order to help developers to test their sources. By testing
sources in a Unit way, it is possible to discover plenty of the errors, helping to
reduce the time spent to find the errors around the whole code.

4/18

Junit Test Generator 13/04/10 Project Report

3. Current Application

The application, as it is right now, is more a wizard that helps newbie
developers familiarize with JUnit Testing, providing a graphical interface in
which it is possible to create asserts and add custom code to the methods of a
Java code, without having to worry about the structure of the file. To explain
how it does it, we will have to analyse the stages the program goes through.

3.1. Lexer

This stage is crucial. With this, it is possible to forget about the
letters while reading the file. This part of the program takes the letters
and figures out what they are together (which token they form), if they
are a reserved word like private, public, etc. That is a huge help in
order to understand what is the structure of the code in the file. It also
takes out useless information, such as line comments, multi-line
comments, spaces, enters, etc.

5/18

Junit Test Generator 13/04/10 Project Report

3.2. Parser

This stage uses the tokens provided from the previous stage and
creates a data-structure with all the useful information. For example, it
takes out the body of the methods, what is not important for our
application. We only care of the the following information:

• Class package

• List of imports

• Class name

• Methods with their access, returned type, name and
parameters.

• Constructors with their access, and parameters.

3.3. User Interface

The User Interface is the way how the user of the application
interacts with it. It should show all the relevant information that the user
might need to know and, at the same time, should remain simple. It is
divided in three parts.

– Menu, with all the options to add a method, add objects
and instructions.

– Left list, with all the methods and constructors from the
file that has been read or the file the user is creating.

– Right list. It is only used when the user loads a Java file.
It shows either the objects declared (when a constructor
is selected on the left list) or the instructions associated to
a certain method (when a method is selected in the left
list).

6/18

Junit Test Generator 13/04/10 Project Report

3.3.1. JUnit Test Mode

The application has two ways (or different modes) of
working. This mode is the main one, allowing the user to create
objects to be used on the tests, and also create instructions and
associate them to a method.

While creating an object, the user has the possibility of
clicking a button that fills the fields for him (all of them (if the
Randomizer is properly filled) but the object name, that it would
be left in blank in order the user to fill it as he/she wishes.

While creating an instruction, if the method associated
returns nothing (void), the application would only allow to declare
instructions manually. Otherwise, it would also allow to create an
assertTrue or assertFalse of a call to that method from an object
declared previously.

3.3.2. Skeleton Mode

This mode is pretty basic, and is not one of the main
goals of the project. However, it has been included because it is
kind of useful while familiarizing the user with the interface.

It allows to create a class skeleton, by just saying the
name of the file, its package, the imports, name of the methods,
returned types, parameters types and access. (There is not
much code that is added, but as it has been said before... it
helps to get used to the interface.

7/18

Junit Test Generator 13/04/10 Project Report

3.4. Randomizer <external project>

With the project, it is attached another jar file (from a project that
is not the JUnit Test Generator (It is considered an external project
because is compiled apart)), that works as a small library.

This jar file is compiled from the Randomizer class.

This class (and also the jar) is provided to add some flexibility to
the application, by allowing the developer to create its own random
types.

For example if the developer wants to create String from 5 to 10
characters, including numbers and special symbols, the only thing
required is to create the proper function in that class.

Another example would be if the developer has its own type from
another class, it would be possible to create a function that randomly
returns something as “new Whatever(23,323)”.

Is a way of doing it more flexible and also to adapt it to the real
needs of the developer and the code that is being produced.

3.5. Test Generator (file generator)

The responsibility of this part of the program is to dump all the
information gathered (either from the current execution or from
previous ones). To do that, it is used the class TestInfo, that stores all
the objects created, all the imports, the package, the class name and a
dictionary that associates the methods prototypes to a bunch of
Instructions.

For convection, the name of the Test class would be
SourceClass + Test. For example, if the class is User, the test
generated would be UserTest. The program allows the user to choose
the name of the Java file, but the class name would suffer no change,
so, the user would have to take that into account.

8/18

Junit Test Generator 13/04/10 Project Report

3.6. Load/Save System

Another important point of the application is the possibility of
saving the progress. By progress it is understood, instructions
associated to the methods and objects associated to a file.

To do that, Java's config files has been used. They are much
simpler than XML structure, they take less space and they are perfect
for small amount of data.

This file stores:

• The amount of objects created, their names and
parameters to initialize them.

• The amount of methods that has instructions (or that
had instructions), the prototype of each of those
methods, the amount of instructions per method and
either their code or their parameters and type of assert.

9/18

Junit Test Generator 13/04/10 Project Report

4. Original Idea VS Product

At the very beginning, this project was that. An Idea. Almost every
detail was open, even which technology to use.

As it has been said before, the idea was to create a software that, given
a Java source, would generate tests automatically, and also Store the test
information to be reapplied after some changes, and even change them by
adding new tests.

The Idea was that the application would generate suggestions to create
the asserts, and the developer would only have to check that they were right.
It turned out that that was pretty complicated because, to be able to do that,
our application would have to modify, compile and run the sources analysed
to know the expected output for the instruction that is being created (or at
least interpret the source code, what would be even more complicated)

Instead, what it has been provided is a tool that allows the developer to
create pseudo-automatically, JUnit Tests, for simple pieces of code. The
original idea of saving the progress to reuse the tests has been kept and is
working.

To simulate the generation of the code, an external Jar is being used.
The developer would have to code some methods and compile the library to
adapt the generator to its needs.

Finally, a small tool (that would need some changes) to create a class
skeleton. As the interface used is pretty similar to the other part of the
program, it helps the final user to interact with the application and familiarize it
-self with the interface.

10/18

Junit Test Generator 13/04/10 Project Report

5. What is left

In this section, not only is going to be shown what is left, but also some
tips about how to fulfil them, and some suggestions that would include new
functionality to the application.

First of all, the Lexer and the Parser should be modified to be able to
recognise more complex Java files. To achieve this goal we should start by
modifying the tokens list, the automaton that interpret the characters and
finally the grammar and File's structure (File is a class that belongs to the
package ast)

To continue, more options should be given when adding an instruction.
Not only AssertTrue, AssertFalse or Custom, but also AssertEquals,
AssertNull, AssertNotNull, AssertSame, etc.). To do this, it is possible to reuse
the Assert class. Add more types to the static final bunch of types of asserts,
add the proper piece of UI, and using the parameters' to store the objects of
the other asserts, for example.

Another thing that is left is to let the user of the application, change the
methods description or the imports already inserted by using the skeleton
mode. (Right now, if the user makes a mistake, he/she has two choices.
Either keep going and then change the generated code or start over again.

Finally, the auto-generation of fields, should be improved, for example
associating a name of a variable and a type to a method, or only the name of
the variable. By doing so, it would be possible to have several ways of
creating each type. (For example, one String for users, another String for a
Traffic plate, etc)

11/18

Junit Test Generator 13/04/10 Project Report

6. Problems Found

Some of the problems found were part of the risk identified, some
others came out in the middle of the project and some others, have been
through all the project.

6.1. The client doesn't know what he wants

As this project was an open project, the requirements were not
set in a strict way. It was my <job> to create the software I wanted. In
this case, the client (me) didn't know what he wanted. As a
consequence of that, the specification was changing little by little as the
project advanced. The advantage of being the client and the developer
is that the lines of communication were pretty fast.

I was able to ask myself if it was <that> what I wanted, say <no>,
and change it to be more similar to my wishes.

12/18

Junit Test Generator 13/04/10 Project Report

6.2. Agile Methodology and Refactoring

One of the advantages of using an Agile Methodology is that you
work on a prototype, and you start adding functionalities. The problem
of that, is that some of them, might (an do) make you change a lot of
code.

A simple example would be the following.

At the beginning, the asserts only stored the code. Once the
editing functionality was going to be added, I had three choices.

– Don't add that functionality (ruled out)

– Create a parser that takes the code as input and figures
out what each field belongs to each parameter, etc.
(Complex and not efficient)

– Refactor Assert class to store all the information in such
a way that could be retrieved to be edited. (What I did)

6.3. Information Storage

There are countless ways of storing information, and I only know
about writing and reading a plain text file. But I knew that there was the
possibility of doing this using other technology.

I thought about using a database (e.g. MySQL or Oracle). This
would make the Test's information extremely interchangeable with
external applications, but would require to set up a database, and
would be too complicated for a single developer.

I also thought about using XML and when I was looking for
information about how to code it, to see if Java had its own build-in
technology to deal with XML, I found out that there was a less known
alternative, that was the configuration files[1]. Then, I learned its
structure and how to work with it and that is the technique used.

13/18

Junit Test Generator 13/04/10 Project Report

6.4. Loss of the project

Just after having the Project presentation, the pen-drive where
all the project was stored (with no back-up) was lost. As a result of that,
I had to start over again. Fortunately, all the documentation was printed
out, but already delivered. It wasn't proper to ask for them. Luckily, with
the same email that I attach the Project Presentation, I also attach the
Design Manual. What relieve the shock of having to start everything
over again. (by everything I mean all the code).

In the design manual where the tokens, the grammar, and the
class structure I used consequently, I was able to catch up faster, as I
didn't have to think about the LL(1) grammar, or how to design the
parser and the UI.

6.5. Using methods through Strings

To be capable of showing some auto-generation feature, it was
needed to have a method that given a Type, was able to call certain
methods, without knowing their names in compilation time. To perform
that operation, I used the getMethod and invoke methods.

14/18

Junit Test Generator 13/04/10 Project Report

7. What would I do different

First of all, I will back everything up, almost everyday in order to
minimize the loss of information in case something happens. There is nothing
more irritating and boring than having to do the same thing twice. It is easer to
do it the second time, cause you already have an idea, and you do remember
some mistakes that made you lose time, that now you won't have them.

Now that I have done a parser by hand, and now that I know how to
workout a grammar in LL(1) (it is required to be able to use a descent
recursive parser), I would probably use JavaCC. It would simplify the way of
parsing the code and would probably be easier to modify in future iterations.

To continue, I would increase the amount of effort given to the design,
mainly due to time lost in redesigning the application. And its consequent
changes in the code. More time in design, would be rewarded as less
variations on the code. What, in turn, would save time. And in bigger
programs, would save a lot of trouble having to say a whole team of coders
that they have to change half of their code.

To conclude, the last thing I would do different is the hand-made
Graphical Interface. It is possible that, having done it by hand, it was easier to
debug and it was even more efficient, but for such a small application
(graphically speaking) is not worthy to spend (waste) that amount of time on
coding and modelling the GUI when using a drag-n-drop tool would be much
faster.

15/18

Junit Test Generator 13/04/10 Project Report

8. What have I learned

To commence, I have learned the importance of having good lines of
communications with the client and also with the people that is going to use
the program. It is very hard to get what the client wants. The real specification.

Usually, the client has an idea in mind and is our job to model it, and
guess if its what he wants. Sometimes, he has an idea and the real users of
the application has a complete different idea. Only by having interviews,
interactivity and showing the prototypes, can we get the proper feedback.

Agile Methodology has, apart from the disadvantages written before,
good things. It allows to show application's prototypes to the customer and
have a feedback of, either the functionality, the GUI, etc.

It is also important to have good means of communication. If each time
we, as developers, have some doubts, we have to wait one month to solve
them, it is likely that what we have assume, was wrong, having to change
some code and, in the worst case, throw everything away and start over.

I have learned the importance of doing JUnit Tests, their structure, and
that they are there for a reason, avoid stupid mistakes to hide in classes when
we try the whole application and fails.

I have also learned a lot about Java, that there are things that I didn't
know that it was possible to do them, such as configuration files, that are
pretty easy and I would have used them years ago if I had known about them.

16/18

Junit Test Generator 13/04/10 Project Report

9. Conclusions

• Developing software is a science that needs psychology and
guessing skills

• Doing things by hand when there are tools that helps, is a bad
Idea.

• It is vital to have back-ups of everything.

• Sometimes the customer doesn't even know what he wants. In
these cases, the developer should get the information for the
applications as the police takes information for their Identikit
picture.

• Agile Methodology helps to detect misunderstandings between
what the client wants and what the developers think the client
wants. It is also good because it allows fixing problems as you
go, but under some cost. (having to redo/change code from time
to time)

17/18

Junit Test Generator 13/04/10 Project Report

10. References

[1] Properties (The Java TM Tutorials > Essential Classes > The Plataform
Environment

 http://java.sun.com/docs/books/tutorial/essential/environment/properties.html

18/18

http://java.sun.com/docs/books/tutorial/essential/environment/properties.html

