
Functional
Specification

JUnit Test Generator

I.T. Carlow

Software Engineering

Bachelor Degree (With Honours)

Sergio Alcocer Vázquez

C00132732

1/17

Table of Contents
1. Vision...3
1.1. Introduction..3

1.2. Business Case...3

1.3. Problem Statement...4

1.4. Stakeholders...4

1.5. Non-Functional Requirements...5

1.6. Functional Requirements...6

1.7. System Usage...7

1.7.1. Code Analyser..7
1.7.2. Wizard..7
2. Functional Model...8
2.1. Use Cases...8

2.1.1. CRUD_Project...9
2.1.2. Load_Project..10
2.1.3. Add_Method...10
2.1.4. CRUD_Method's_Tests..11
2.1.5. Generate_Test...12
2.1.6. Generate_Skeleton...12
2.2. Screen Shots...13

2/17

1. Vision

1.1. Introduction

The JUnit Test Generator is a system that allows the user (usually a

software developer) to generate JUnit Tests early in the project semi-

automatically and, if the project is already finished, to generate JUnit Tests to

test it. The program will gather information from the user during all the process

of creation of the tests (with a wizard) such as input examples (type is

recognized, but not its format if exists), but it won't require the user to be an

expert on JUnit Testing, only a brief knowledge. If the tests are for a project that

hasn't been started yet, it will allow to generate its skeleton. And all the

information gathered and all the settings should be kept for futures executions.

1.2. Business Case

There are other programs that tent to do the same, but as they are not

under support any more, and Java is a language that is changing (little by little,

but changing) they are outdated and not working for the current needs at all.

Some others are expensive and comes with several extras (included in the price)

that maybe the developer don't want to use it. Our program, apart from offering a

much cheaper tool, it will also be so simple to use that the developer could be

learning how to create JUnit Tests by hand at the same time (s)he use it.

3/17

1.3. Problem Statement

Nowadays, the Software Engineering is very used on all projects, but

still, too many project don't include Testing as part of the development process,

what leads in a bad quality software. The main reason of that is that there are a

lot of software developers don't know about Testing (not only Unit Testing), or

the know about it, but they don't have time to learn it. With our program,

software developers, not only would be able to start using JUnit Tests answering

some simple questions, but also they will learn how to use JUnit.

1.4. Stakeholders

Stakeholders for this project are developers that want to add JUnit

Testing to a Project that doesn't have it and those who want to start a project

using JUnit and want the test part to be generated automatically as they go

typing code for the application.

4/17

1.5. Non-Functional Requirements

Requirement Reason

Java Language
Since the source analysed is in Java, it is
convenient to use the same language in order not
to force users to install extra software.

Maintainability
Since Java is a language that is changing
continuously, the code of the project should be
easily modifiable to support these changes.

Intuitive Interface
(Easy to use)

As the user could be a non-expert on JUnit then,
it should be enough easy to use that the user
actually would be able to use it.

No Performance
The response time is not critical. It doesn't
matter whether it takes 2 or 30 seconds to work-
out the tests classes.

No Scalability
As it is a JUnit Test Generator, the classes to be
analysed cannot be increasing too much
(otherwise, it is a bad design)

No Security As there is no personal information involved, no
life is in danger, etc.

Medium Reliability
Should be have enough reliability to trust it as a
tool, but it may fail and the programmer should
be able to notice that.

Availability ?

It's not an on-line tool (not right now), so the
concept of availability is not required. If it is
decided to develop a web-based version, this
requirement would become more important.

5/17

1.6. Functional Requirements

Requirement Priority Concerns
Create Test for a
certain function Critical Creating a test for a method of the class

(that includes increasing it)

Analyse Project's Class Critical Must generate a tree of public methods,
recognise inputs, etc.

Auto-save High
Should be saving all the information
gathered from the user in order to use it in
future executions.

Import / Export
Configuration in XML Optional

To follow standards and be able to easy
use it with other future applications, and to
be easy modifiable and readable by
humans, saved information should be
importable and exportable through XML
files.

Web Integration Optional
Allow people using the program from a
website without having to run it. Just
uploading the project folder.

Update Manager Optional

Will automatically check (if Internet
connection is available) for updates of the
software and ask the user if (s)he wants to
install it.

6/17

1.7. System Usage

There are two main usages of the application. One of them as a code

analyser (for projects that already exists) and the other one is as a pre-

development process, that will trigger automatically the wizard to guide the user.

1.7.1. Code Analyser

The user must specify source files, and the application would scan

them to know dependencies between classes. After that, a Wizard would

guide the User through all the steps to add new tests, by displaying

options to choose which method would the User like to test, what

parameters to use, and all the related options. Will suggest outputs (based

on current output of the code), etc.

1.7.2. Wizard

A wizard will guide the user through all the steps, creating test for

functions that doesn't exist, type of parameters, etc. And maybe will

generate a skeleton of the class needed to fulfil the test (at least the public

methods)

7/17

2. Functional Model

2.1. Use Cases

8/17

2.1.1. CRUD_Project
Use Case UC01
Name CRUD_Project
Actors HumanOracle
Priority Critical
Details

The Create's basic flow is as follows:

1. <HumanOracle> chooses Create Project Option.
2. <HumanOracle> browses the destination folder.
3. <System> creates the project.
4. <System> stores some information in the folder chosen.
5. The use case ends.

Alternative flows:

If in step <2>, the folder contains a project.
3. <Load Project> use case is triggered.
4.1. If a JUnit project exists, <System> loads the information.
4.2. Otherwise, <System> creates file configuration, etc.
5. The Use Case ends.

Alternatives:
Read Project.

In step <1>,
<HumanOracle> chooses Load Project Option.
In step <2> destination folder must contain a ...
...JUnit Project.

The Update's basic flow is as follows:
Precondition: a JUnit Project should have been loaded.
1. <HumanOracle> changes some settings.
2. <System> stores the changes
3. The Use Case ends.

The Delete's basic flow is as follows:
Precondition: a JUnit Project should have been loaded.

1. <HumanOracle> chooses Delete Project Option
2. <System> asks to delete either the Junit Project or also the Java
 one
3. <HumanOracle> chooses what to delete.
4. <System> deletes the information requested.
5. The Use Case ends.

9/17

2.1.2. Load_Project
Use Case UC02
Name Load_Project
Actors HumanOracle
Priority Critical
Details

The basic flow is as follows:

1. <HumanOracle> choose the Java project to be loaded, or is
 triggered by <CRUD_Project> use case.
2. <System> analyse the sources and display a “working” message
3. <System> uses <Add_Method> use case to add the loaded class

 methods.
4. <System> changes the view (User Interface) and show the tree of
 methods, proper menus, etc.
5. The Use Case ends.

Alternative flows:

If in step <3>, there is no information about the class, will skip the
step and resume to step <4>

10/17

2.1.3. Add_Method
Use Case UC03
Name Add_Method
Actors HumanOracle
Details

This Use Case is only available if the user is creating the project from
scratch (won't be available if is creating tests for an existing project unless
is triggered by the system. In that case, <HumanOracle> interaction would
be filled by <System>).

1. <HumanOracle> give a name to the method
2. <HumanOracle> sets returning value
3. <HumanOracle> add a parameter name and type.
4. <HumanOracle> repeats step <3> until all methods have been
 introduced.
5. <System> updates list of methods.

11/17

2.1.4. CRUD_Method's_Tests
Use Case UC04
Name CRUD_Method's_Tests
Actors HumanOracle
Details

Preconditions:

A class method has to be selected.
While Reading, Updating and Deleting, a Test Case has to be chosen

The Create's basic flow is as follows:

1. <System> will show a window with suggestions for the inputs
 and/or output.
2. <HumanOracle> chooses the auto-generated inputs
3. <HumanOracle> writes the expected output
4. <HumanOracle> click on save
5. <System> add the new Test to the list and save it in the datastore.
6. <System> return to Main View (User interface)
7. The Use Case ends.

Alternative flows:
If on step <2> the user doesn't want the auto-generated inputs

2. <HumanOracle> writes his own inputs
3. Resume to Step <3> (basic flow).

Read flow:

1. <System> gets and shows current inputs and the output
2. The use case ends

Update flow:
1. <System> will show a window with the current inputs and output.
2. <HumanOracle> modifies input and/or the output
3. <HumanOracle> click on Save Changes
4. <System> updates the new Test Information in the list and in the
 datastore.
5. <System> return to Main View (User interface)
6. The Use Case ends

Delete flow:
1. <System> deletes the Test Case from the list and from the
 datastore.
2. The Use Case ends.

12/17

2.1.5. Generate_Test
Use Case UC05
Name Generate_Test
Actors HumanOracle
Details

1. <HumanOracle> Chooses Generate Test Option

2. <System> with the information from the class(es) and the

 information about the methods and the Test cases, it builds the

 test class.

3. The use case ends.

13/17

2.1.6. Generate_Skeleton
Use Case UC06
Name Generate_Skeleton
Actors HumanOracle
Details

This use case is only available when the project opened is one created from
scratch.

1. <HumanOracle> Chooses Generate Skeleton option.

2. <System> generates the skeleton with the information gathered in

 the project's folder

3. Use case ends

14/17

2.2. Screen Shots

This is the starter User Interface. No project has been created nor loaded

yet. It gives the user the choice to either create a new project from scratch or

from existing Sources.

If Project From Sources is chosen, the user will be requested to give the

location of the source file (browsing it), after that, the program will analyse the

code and prompt a list of functions (public methods of the class), to start adding

tests.

15/17

A list of functions will be shown, (once analysis finishes or as the user

types them). Selecting one of them, will list the actions associated to that method

as shown below.

16/17

The constructor method (left list) is used to store almost all the objects

used for the whole test. (will be shown on the right list).

From this view, the user can, either edit a current action, insert new ones,

Generate the code, etc.

Generating the code may mean generating also the skeleton of the classes

if is done from scratch and the user give his permission.

As this is a document released at the beginning of the

development process, is not possible to assure that User

interfaces won't change. Actually, they are likely to change to

fit the needs during the Modelling Process and the Coding of

the application.

17/17

