

Institute of Technology Carlow
Software Development

Final Report

Gym Performance System

Year 4 Project

By

Daniel Hayden - C00137009
Supervisor - Dr. Greg Doyle

Due Date: 18/04/2018

Table of Contents
1.0 Introduction 3

1.1 Source Control 3

1.2 Source Control 3

2.0 Description of Submitted Project 4

2.1 Web Application Framework 4

2.2 Web Application Overview 4

2.2.1 The Homepage (Logged Out) 5

2.2.2 Register 7

2.2.3 Login 8

2.2.4 Password Reset 9

2.2.5 Newsfeed 10

2.2.6 Client Manager (Logged in as Trainer) 12

2.2.7 View Requests (Logged in as Trainer) 13

2.2.8 Find User 14

2.2.9 Mailbox 15

2.2.10 View Mail 16

2.2.11 Create Mail 17

2.2.12 User Profiles 18

2.2.13 Newsfeed Edit Post 19

2.2.14 User Profile Settings 20

2.2.15 Exercise Plan Manager View (Logged in as Trainer) 21

2.2.16 Exercise Plan Manager Manage/Update/Edit (Logged in as Trainer) 22

2.2.17 Create Exercise Plan (Logged in as Trainer) 24

2.2.18 Trainer Finder (Logged in as Client/User) 27

2.2.19 My Exercise Plan (Logged in as Client/User) 28

2.2.20 View Exercise 29

2.3 Mobile Application Framework 30

2.4 Mobile Application Framework Overview 30

2.5 Mobile Application Screenshots 31

3.0 Description of Conformance to Specification and Design 34

4.0 Description of Learning 35

5.0 Review of Project 36

2

6.0 Acknowledgements 37

7.0 References 38

3

1.0 Introduction
The purpose of this document is to explain the work carried out when developing our gym

training application called Total Fitness. We will also cover what we learned from this project

and things that we would do differently if we were to start this project over.

As part of a fourth year of our Bachelor of Science in Software Engineering Honors we were

required to develop a gym performance training application. As a requirement the application

needed to run on multiple devices and it needed to be secure. We feel that our final two

products (Web and Mobile based applications) meet these requirements as set out.

1.1 Code quality and security

When developing or code we had a strong focus on code quality and security. The laravel

framework provided us with the security that we needed and allowed us to white clean high

quality code. High security was one of the featured mentioned in a original specification and

laravel allowed us to do that by creating secure user authentication, password encrypting, cross

site request forgery prevention, cross site scripting prevention and much more.

1.2 Source Control

This entire project, Web application and mobile, was created using source control manager git

and is stored on github at:

Web Application

https://github.com/Sledro/TotalFitnessMobile

Mobile

https://github.com/Sledro/TotalFitnessLaveral

4

2.0 Description of Submitted Project

Please note that all exercises are pre created and inserted into the databases exercise table

manually. The personal trainer are then able to select from these predefined exercises when

creating their plan. This was done to ensure that all of the exercises will contain the correct

information and rain uniform.

2.1 Web Application Framework

The web application was created using the PHP framework Laravel - “The PHP Framework For

Web Artisans” [1]. This was our first time using laravel and overall it was a great experience.

Laravel is installed using a PHP package and dependency manager called “Composer” [2].

Laravel is a MVC (Model View Controller) framework that provide the quick and efficient

creation of models views and controllers via the command line using its command line interface

called Artisan. Artisan is the command-line interface included with Laravel. “It provides a

number of helpful commands that can assist you while you build your application” [3]. Laravel

also provides you with the option to use database migrations. Database migrations are

essentially source control for your database while it is under development. For a project, we did

use database migrations for a few weeks and then decided against it as it was greatly slowing

down development time trying to learn how to properly use database migrations, PHP MVC

and the Laravel Framework itself. Another useful tool that Laravel provides you as a developer

is the ability to create easy object or model relationships using Eloquent. “The Eloquent ORM

included with Laravel provides a beautiful, simple ActiveRecord implementation for working

with your database. Each database table has a corresponding "Model" which is used to interact

with that table. Models allow you to query for data in your tables, as well as insert new records

into the table.” [4]. There is a many more features and advantages to name here that using a

PHP Framework such as Laravel provided us. The above features are an overview of the main

features that we used while developing Total Fitness.

2.2 Web Application Overview

In this section we will present screenshots of the multiple different pages that are on the web

application, the purpose and and the functionality and work carried out for that page. Please

note that instead of going through all of the code here that we wrote, we will focus on key

functions. All of the code developed by us for this project along with instructions on how to

install both applications can be found in our Technical Manual. Please note that all of the

following pages use web routes to define which url when accessed should point to which

controller and return which view. Agin all of the routes are posts in the Technical Manual.

5

2.2.1 The Homepage (Logged Out)

Figure.1 The homepage when no user is logged in

Purpose

This is the landing page for when a user who is not logged in or does not yet have an account

accesses the web application. The user will be presented with only be presented with three

options in the menu bar on the left. This is because we do not want a user accessing pages that

require an authenticated session to function correctly. It also encourages the user to sign up to

a website. The user is given the options to sign up, login or view the newsfeed. When a user

clicks on the newsfeed they will be asked to register before they can view it.

Functionality and summary of work carried out

To set up this page we first needed to set a route

Route::get('/', 'PagesContorller@index');

When a user views this url the index function inside the PagesController is called.

6

public function index(){

 if(Auth::guest()){

 return view('pages.index');

 }

 else{

 return redirect ('/newsfeed');

 }

 }

This function then checks if the user visiting the index page is authenticated or not. If the user is

not a guest then they will be redirect to the newsfeed.

7

2.2.2 Register

Figure.2 The register page

Purpose

The purpose of this page is to allow the user to register or create an account.

Functionality and summary of work carried out

This page was generated using Laravel's CLI command called “php artisan make:auth”. [5] This

command tells Laravel that we want to use user authentication and Laravel will generate the

registration, and login page for you securely. By doing this Laravel will also look after secure

user sessions for you. This page was slightly modified by ourselves to take an extra ‘dropdown

select’ parameter called isTrainer. This variable stores in our Users table in a database

informing us whether or not a user is a personal trainer.

'isTrainer' => $data['isPT']

Passwords are securely encrypted before by Laravel they are stored in the database.

'password' => bcrypt($data['password']),

8

2.2.3 Login

Figure.3 The login page

Purpose

To allow a registered use to login and create a secure user session with the web application.

Functionality and summary of work carried out

As with the registration page above, this page was created using “php artisan make:auth”. [5]

9

2.2.4 Password Reset

Figure.4 The password reset page

Purpose

The purpose of this page is to provide users with the ability to reset their password via their

email address in the event that they lost their password.

Functionality and summary of work carried out

As with the registration page above, this page was created using “php artisan make:auth”. [5]

10

2.2.5 Newsfeed

Figure.5 The Newsfeed

Purpose

We knew we wanted to make a site more interactive and we thought what better way to

achieve this then by adding a news feed that users can post messages to. We added a sponsors

section on the right hand column of this web page, to remove blank space on the web

application and allow for more revenue. The idea here is that gym training supplements and

gyms themselves can rent advertising space here. This column will not be displayed on mobile.

Functionality and summary of work carried out

This page consists of three main files. The Newsfeed model, NewsfeedController and the

Newsfeed->index.blade.php view. This page uses the table in the database called newsfeed,

which stores the user's posts to the newsfeed.

In a model we defined a one to many relationship between the newsfeed and the user model.

 protected $table = 'newsfeed';

 public function users() {

 return $this->belongsTo('App\User', 'userID', 'id');

 }

11

In the controller we have the functions that are used for carrying out the multiple different

tasks required for this page to function. Index() will fetch all posts from the database and return

them to this view as an object to be displayed. Here we also have similar functions for storing(),

editing() updating() and deleting() posts on the newsfeed.

The SQL queries in this class are written to only allow the user to see the any posts that are

created by a user that they follow or that are created by themselves. Here is an example of the

index()

 $userID=Auth::user()->id;

 $userID2=Auth::user()->id;

 $posts = Newsfeed::select('*')

 ->from('newsfeed')

->whereRaw('userid IN (SELECT userID FROM user_followers WHERE

followerID=:userID) OR userID=:userID2')

 ->take(10)

 ->setBindings([$userID, $userID2])

 ->get();

 return view('newsfeed.index')->with('posts', $posts);

Lastly in this controller we have a function called profileFeed($id). This function is used for

retrieving all the posts on the newsfeed that were made by the user with the given $id which is

what we need for a users profile page newsfeed.

12

2.2.6 Client Manager (Logged in as Trainer)

Figure.6 Client Manager

Purpose

The purpose of the client manager is to allow personal trainers to view the entire list of their

existing clients and to allow the personal trainer to manage or update the training plan that the

trainer currently has assigned to each client. The personal trainer also has the ability to remove

a client on this page. Finally the personal trainer has a green button on this page to allow them

to view any requests that they might have received from users to become their personal

trainer.

Functionality and summary of work carried out

The main files used to create and manage this page are the ClientManager model,

ClientManagerController and the ClientManager>viewClients.blade.php view. This page uses

the column users table in the database called trainerID. This trainerID column stores the ID of

the current trainer assigned ot that uses.

13

2.2.7 View Requests (Logged in as Trainer)

Figure.7 View Requests

Purpose

This page was created to allow a personal trainer to view and accept (or ignore) all of the

current users that have requested this personal trainer to become their own personal trainer.

Functionality and summary of work carried out

The main files used to create and manage this page are the ClientManager model,

ClientManagerController and the ClientManager>requests.blade.php view. The controller have

two functions called requests() and accept(). These functions contain the logic for how client

requests are handled. We also added a trainer_requests table into the database for this page.

This tables give us the ability to store a record of every request made.

14

2.2.8 Find User

Figure.8 Find user page

Purpose

This page was created to allow any user to search for another user or personal trainer by name

or email.

Functionality and summary of work carried out

The main files used to create and manage this page are the routes file located at

routes->web.php and the search.blade.php view. The search menu in the top menu bar is also

included at inc-> navbar.blade.php. This page gives a users the ability to search for another user

or personal trainers profile using their full name or part of their name. A user can also be found

by searching for their email address. Most of the logic for this page could be coded directly in

the routes page

Route::any('/search',function(){

 $q = Input::get ('q');

$user =

User::where('name','LIKE','%'.$q.'%')->orWhere('email','LIKE','%'.$q.'%')->get();

 if(count($user) > 0)

 return view('search')->withDetails($user)->withQuery ($q);

else return view ('search')->withMessage('No Details found. Try to search again

!');});

15

2.2.9 Mailbox

Figure.9 View Mailbox

Purpose

The purpose of this page, is to allow users to view a record of all of the private messages that

they have either sent or received.

Functionality and summary of work carried out

The main files used to create and manage this page are the Mailbox model, MailboxController

and the Mailbox>viewAll.blade.php view. The controller has a function for fetching and

returning all of the user's private mails called index() that returns the mails object to the view.

public function index()

 {

$mail = Mailbox::with('sender')->with('receiver')->where('receiverID', '=',

Auth::user()->id)->orWhere('senderID', '=', Auth::user()->id)->get();

 return view('mailbox.viewAll')->with('mail', $mail);

 }

16

2.2.10 View Mail

Figure.10 View Mail

Purpose

The purpose of this page, is to allow users to view an individual mail and to allow the user to

reply to that mail.

Functionality and summary of work carried out

The main files used to create and manage this page are the Mailbox model, MailboxController

and the Mailbox>viewMessage.blade.php view. The controller has a function for fetching and

returning all of the messages that are included in the given mail. The controller also proves a

functions to submit the reply which is called reply(). The reply comes from a form that is coded

inside the view.

17

2.2.11 Create Mail

Figure.11 Create Mail

Purpose

This page allows a user to create a new private mailbox message and send it to a user. This page

can be access by clicking on the ‘Private Message’ button located on every users profile page.

Functionality and summary of work carried out

The main files used to create and manage this page are the Mailbox model, MailboxController

and the Mailbox>create.blade.php view. The view contains a form that is submitted to the

controller via the web routing page. The functions called store() which is located inside the

controller will then take the values from the forum and store them in a database. There is two

tables in the database that are used to store user mail. These are mailbox and

mailbox_messages.

18

2.2.12 User Profiles

Figure.12 User Profiles

Purpose

The user profile page is used to display details about the user such as who their personal trainer

is, where they are located and their age. This page also shows any posts that the user has made

to the newsfeed and a sponsors section.

Functionality and summary of work carried out

The main files used to create and manage this page are the User model, UserController and the

User>index.blade.php view. The username is taken from the URL via a http GET request in the

route. The route then sends that username to the controller called show($username) which will

then return the user details to the view. Users are stored in the database table called users.

19

2.2.13 Newsfeed Edit Post

Figure.13 Newsfeed edit post page

Purpose

This page allows a user to edit a post that they have created on the newsfeed. Note: The user

also has the option to delete a post directly on the newsfeed.

Functionality and summary of work carried out

This page consists of three main files. The Newsfeed model, NewsfeedController and the

Newsfeed->edit.blade.php view. The form is submitted to the controller along with the postid

and the controller will validate the input data and and update the corresponding record in the

database.

20

2.2.14 User Profile Settings

Figure.14 User settings page

Purpose

The purpose of this page is to allow the user to add or update their profile information such as

Name, Address or Gender.

Functionality and summary of work carried out

The main files used to create and manage this page are the User model, UserController and the

User>insettingsdex.blade.php view. The form is submitted to the controller along with the user

id and the controller will validate the input data and and update the corresponding record in

the database.

21

2.2.15 Exercise Plan Manager View (Logged in as Trainer)

Figure.15 Exercise Plan Manager page

Purpose

This is one of the main pages in the application. It allows the logged in personal trainer to view

all of their pre-created training plans. The personal trainer can manage or update an individual

training plan by clicking on the blue ‘Manage’ button for the selected plan. The personal trainer

can also navigate to the create a new exercise plan page by click on the green button on the top

right hand side of this page. Finally this page provides the personal trainer with the ability to

delete the selected training plan by click on the red ‘Delete’ button located on each plan/row.

Functionality and summary of work carried out

The main files used to create and manage this page are the ExercisePlans model,

ExercisePlansController and the ExercisePlans>viewPlansTrainer.blade.php view. The

authenticated trainer id is sent from the session to the controller which returns all of the

training plans that are associated with each use to the view, The object of that is return

contains all of the plans and is iterated through inside the view to populate the table.

22

2.2.16 Exercise Plan Manager Manage/Update/Edit (Logged in as Trainer)

Figure.16 Exercise Manager page

Purpose

The purpose of this page is to allow the personal trainer to change or update or delete a

training plan that they have already created.

Functionality and summary of work carried out

The main files used to create and manage this page are the ExercisePlans model,

ExercisePlansController and the ExercisePlans>editPlan.blade.php view. The plan id is received

from the URL via a http GET request. This id is send to to the controllers show() function and

this function returns the exercise plan details along with the exercises included in that plan

from the database tables: exercise_plan, exercise_plan_details and exercises. This can be done

in one call using Laravel Eloquent Object Relation Model.

$plan = ExercisePlan::with('exercises.exercise')->find($id);

$exerciseList = Exercise::pluck('name', 'id');

return view('exercisePlans.editPlan')->with('plan', $plan)->with('exerciseList',

$exerciseList);;

23

These relationships are set up in the corresponding models

//Exercise Plan Model has many relationship for ORM
 public function exercises()

 {

 return $this->hasMany('App\ExercisePlanDetails', 'planID', 'id');

 }

//Exercise Plan Details Model
 public function exercise()

 {

 return $this->belongsTo('App\ExercisePlanDetails', 'exerciseID');

 }

Each day of the week is collapsible to make the page shorted on a mobile display. This also

works quite well with the desktop display so we decided to keep that there also. When the

exercise details is clicked on it will navigate the user to view that exercises on the

corresponding exercise page.

One this particular plan, Thursday to Sunday are rest days are no exercise have been submitted

for those days.

24

2.2.17 Create Exercise Plan (Logged in as Trainer)

Figure.17 Create exercise plan

Purpose

The purpose of this page is to allow the personal trainer to create a new exercise plan.

Functionality and summary of work carried out

The main files used to create and manage this page are the ExercisePlans model,

ExercisePlansController and the ExercisePlans>createPlan.blade.php view. We created a

algorithm inside the view to add new divs to the view with unique div id numbers. This is done

using javascript. This page was the first page we developed using the weekly training plan

calendar design and it took quite a lot of time to get right. Again everything needed to be

mobile responsive.

25

Add new div via javascript algorithm

 <script>

 var value = "";

 function changeVal(choice) {

 if (choice == 'val1') {

 value = '1';

 } else if (choice == 'val2'){

 value ='2';

 } else if (choice == 'val3'){

 value ='3';

 } else if (choice == 'val4'){

 value ='4';

 } else if (choice == 'val5'){

 value ='5';

 } else if (choice == 'val6'){

 value ='6';

 } else if (choice == 'val7'){

 value ='7';

 }

 }

 function rand(){

 return Math.floor((Math.random() * 1000) + 1);

 }

 $('input[name="queue"]').click(function(){

 var a=rand();

 $("<div class='panel-group'>"+

 "<div class='panel panel-default'>"+

 "<div class='panel-heading'>"+

 "<h4 class='panel-title'>"+

"<a data-toggle='collapse' href='#collapse"+a+"'>New

Exercise</h4>"+

 "</div>"+

 "<div id='collapse"+a+"' class='panel-collapse collapse'>"+

 "<div class='panel-body' style='padding:10px;'>"+

26

 "<div class='form-group'>"+

"<label for='description'>Exrcise

Description</label>
"+

"<select

name='exerciseList["+value+"][]'>"+

<?php foreach ($exerciseList as $key =>

$item){ ?>

"<option value='<?php echo $key;

?>'><?php echo $item; ?></option>"+

 <?php } ?>

 "</select>"+

 "</div>"+

 "<div class='form-group'>"+

"<label for='description'>Exrcise

Description</label>
"+

" <a class='card-link'

href='./exercise/'>Exercise Details
"+

 "</div>"+

 "<div class='form-group'>"+

"<label for='reps[]'>Number of

Reps</label>
"+

"<input type='text'

name='reps["+value+"][]' size='15'>
"+

 "</div>"+

 "<div class='form-group'>"+

"<label for='sets[]'>Number of

Sets</label>
"+

"<input type='text'

name='sets["+value+"][]' size='15'>
"+

 "</div>"+

 "<div class='form-group'>"+

"<label for='weight[]'>Weight

(kg)</label>
"+

"<input type='text'

name='weight["+value+"][]' size='15'>
"+

"</div></div></div></div>").appendTo(".cardDay"+value);

 })

 </script>

27

2.2.18 Trainer Finder (Logged in as Client/User)

Figure.18 Trainer Finder page

Purpose

The purpose of this page is to allow a user to find a new trainer and send them a request to

become their own trainer.

Functionality and summary of work carried out

The main files used to create and manage this page are the TrainerFinder model,

TrainerFinderController and the TrainerFinder>view.blade.php view.

28

2.2.19 My Exercise Plan (Logged in as Client/User)

Figure.19 My exercise plan page

Purpose

The purpose of this page is to allow a user to find a new trainer and send them a request to

become their own trainer.

Functionality and summary of work carried out

The main files used to create and manage this page are the ExercisePlans model,

ExercisePlansController and the ExercisePlans>viewPlanClient.blade.php view.

29

2.2.20 View Exercise

Figure.20 View exercise page

Purpose

This page is displayed when a user clicks on any of the numerous ‘exercise details’ links located

in their exercise plans. In every plan where an exercise is mentioned, the details of that exercise

can be viewed.

Functionality and summary of work carried out

The main files used to create and manage this page are the Exercise model, ExerciseController

and the Exercise>viewExercise.blade.php view.

Note that we have the correct exercise details being successfully passed from the controller to

the view. We have not yet had the time to design this page but that will be done before the

program demonstration date. The youtube video links will be embedded and this page will give

the user a better description of the exercise and show them how to perform the exercise

correctly.

30

2.3 Mobile Application Framework

For the mobile application we used Ionic[6] as planned. Ionic lets you code in Angular and

Typescript and then package that code to be use natively on Android, Ios and Windows devices.

However instead of creating an entire new application we use Ionic to display a website in a

native application using Ionics web viewer. This gives the impression that the user is using a

fully native application when really they are viewing a website though the applications web

viewer. This downside to this is that the user will not receive a full native experience as some

buttons and menus will be displayed in html rather than the mobile operating systems native

user interface components. The big advantage to using this type of application is we need to

write significantly less code in a mobile applications code base. With the limited time that we

have to complete this project time is golden so the pros definitely outweigh the cons in this

case.

2.4 Mobile Application Framework Overview

All of the code that was developed for the mobile application can be viewed in the Technical

Manual however here is the main file that routes the web viewer to display a web application

that is located on a web server.

import { Component } from '@angular/core';

import { NavController } from 'ionic-angular';

import { InAppBrowser } from '@ionic-native/in-app-browser';

@Component({

 selector: 'page-home',

 templateUrl: 'home.html'

})

export class HomePage{

 constructor(public navCtrl: NavController,private iab: InAppBrowser /* 2 */) {

 this.iab.create('http://totalfitness.host','_self',{location:'no'}); /*3*/

 }

}

31

2.5 Mobile Application Screenshots

Figure 21 User Profile page mobile

Figure 22 Newsfeed Page mobile

32

 Figure 23 Menu mobile Figure 24 My Training Plan page mobile

33

 Figure 25 Private messages mobile Figure 26 Settings page mobile

34

2.6 Database

35

3.0 Description of Conformance to Specification and
Design

There has been a number of changes to the project since writing a functional specification and

design document. The main change is the move from Google's Firebase to a MySQL database.

While undergoing development to the project, we discovered that there is no official support,

documentation or API to allow us to use PHP with Google's Firebase Database System.

However we did find an unofficial API located on github. We began developing a php

application using this API only to discover a few weeks later that the API is still under

development and is very buggy. It was a tough choice but after about a month of development

we decided to start over using a mySQL database.

The fact that we were now using a mySQL database and starting over allowed us to look at

various PHP Frameworks and this is when we chose Laravel [1].

As we were now learning Laravel , development time was much slower then what we had

anticipated when creating out documents. It was a couple of months later when we realised

that we could not get this web application finished and and then develop a totally separate

Ionic mobile application. We thought back to a third year Software Engineering module when

we were learning about different types of mobile applications such as Native, Hybrid and Web

based. We then decided that using a hybrid approach would greatly speed up a development

time and allow us to have a semi-native mobile application

In summary we decided to swap out a Firebase database with a mySQL database and

implement laravel and we decided to swap a fully coded ionic application for a hybrid

application.

Although these are quite drastic changes from a original documents, we feel that the end

product would benefit greatly from these changes in terms or progress and also quality.

36

4.0 Description of Learning

4.1 Technical

Over the past eight months working on this project, We have acquired a vast amount of new

technical skills. We have gained a much better understanding of the PHP programming

language and what can be achieved with it. As said above, using Laravel was a great experience

and we look forward to creating my next project with it. We learned how to properly use the

Model View Controller design pattern and which code belong in which section of the MVC

pattern. We have learned a huge amount about the Ionic Framework and what it can be used

for. While learning Ionic we learned how to code in Typescript and Angular. Using Bootstrap for

my interface and also having a mobile interface thought me a lot about how to create

responsive bootstrap user experience. Some other technical skill that we improved on while

developing this project was the use of git, mysql, phpmyadmin,

4.2 Personal

On a personal level we have also learned a lot from this development project. We learned that

when using the agile methodology you project can end up quite different from what you had

originally planned in your documentation. Our presentations gave us much more confidence

when speaking formally in public. Another thing that this project helped us with is time

management. This project was carried out over a period of eight months and during those eight

months we were met with numerous deadlines. Having to meet these deadlines has definitely

taught me how to manage my time better.Finally I have learned how to write documents more

professionally and formally.

37

5.0 Review of Project
Overall we would like to consider the project a success. We successfully developed a multiple

platform, secure system that allows personal trainers to create plans and manage their clients.

We also decided to add in some extra features such as private messaging, trainer finder, user

finder and a newsfeed .

We feel that changing the projected to Laravel was a good decision as once Laravel was learned

development speed was increased. If we were to start this project again we would use the

same technologies and what we ended up with here except we would have more features as

we would have more time to code. We did have to remove some features from the original

documents such as the exercise manager due to this lost time trying to get Firebase to work

correctly with PHP. If we were to give advice to another student starting a similar project in the

future we would tell them to spend time researching Laravel and php instead of Firebase and

PHP.

38

6.0 Acknowledgements

6.1 Dr. Greg Doyle

We would like to thank Dr. Greg Doyle for providing his advice whenever it was required. As my

project supervisor, Greg played a key role in helping me get my documents in order and advised

me on the direction of my project.

6.2 Dr. Joseph Kehoe
We would also like to thank Joseph for providing us with useful information and details about

the project.

39

7.0 References
[1] Laravel. 2018. The PHP Framework For Web Artisans . [ONLINE] Available at:

https://laravel.com. [Accessed 17 April 2018].

[2] Composer. 2018. Dependency Manager for PHP. [ONLINE] Available at:

https://getcomposer.org/. [Accessed 17 April 2018].

[3] Laravel. 2018. Docs - Artisan Console . [ONLINE] Available at:

https://laravel.com/docs/5.6/artisan. [Accessed 17 April 2018].

[4] Laravel. 2018. Docs - Eloquent: Getting Started. [ONLINE] Available at:

https://laravel.com/docs/5.6/eloquent. [Accessed 17 April 2018].

[5] Laravel. 2018. Docs - Authentication. [ONLINE] Available at:

https://laravel.com/docs/5.6/authentication. [Accessed 17 April 2018].

[6] Ionic. 2018. Docs - Build Amazing Native Applications. [ONLINE] Available at:

https://ionicframework.com/. [Accessed 17 April 2018].

40

https://laravel.com/

