
1

STM for games

Design Manual

Author: Arkadiusz Bielecki

ID: C00139358

Date: 10.01.2013 Project Supervisor: Joseph Kehoe

2

Table of Contents

1. Introduction .. 3

2. GUI Design ... 3

3. Model of the Application .. 4

4. Use Case Diagram ... 5

5. Use Cases .. 5

Brief Use Cases .. 5

Detailed Use Cases .. 6

6. Domain Model .. 9

7. Layers .. 10

8. Communication ... 11

3

1. Introduction

The Design Manual is showing the Model of my application. All the

design needs to be described and planned carefully in order to avoid unwanted

misunderstandings during the development. I will describe the design of

graphical user interface (GUI), all of the algorithms that will be used and

metrics - how the measurements will be calculated and shown on the diagram.

The purpose of my project is to show how Software Transactional Memory

(STM) (a concurrency control mechanism) will affect the performance in

gaming. I will implement Simple and Fast Multimedia Library on a game, using

a standard synchronization, then using various STM algorithms, benchmark

them, and compare whether the performance have increased or not.

2. GUI Design

 Graphical User Interface that will be used in my project will be kept as

simple as possible. The application can’t take up too much memory, and doesn’t

need to look fancy, so I have decided to give it a simple, but at the same time

modern look. The main window of my project will have various check boxes -

so a user can select desired window size, and what algorithms to measure. The

output of my app will show a graph appropriate to the selected options.

4

3. Model of the Application

Main interaction model of the application is shown on a diagram below:

Code will be written on top of RSTM and SFML algorithms, then

implemented in Visual Studio in order to measure the performance and produce

the output.

OpenMP will be used to run a specific configuration in parallel threads, it’s an

API that allows code to run in parallel, under different hardware configurations.

Timing Code will be implemented in order to measure how much time it took

to run a specific configuration.

5

4. Use Case Diagram

5. Use Cases

Brief Use Cases

Measure Swarming Performance

Actors: User

Description: This use case begins when a user wants to use measure system

performance using the Swarming algorithm. The user selects appropriate

configuration (Swarming Performance and board size). The application will test

the code and inherit various testing methods from RSTM Library. Time will be

measured, by inheriting from the <time.h> library. Appropriate values will be

saved and shown on the output graph, which ends this use case.

6

Measure Flocking Performance

Actors: User

Description: This use case begins when a user wants to use measure system

performance using the Swarming algorithm. The user selects appropriate

configuration (Flocking Performance and board size). The application will test

the code and inherit various testing methods from RSTM Library. Time will be

measured, by inheriting from the <time.h> library. Appropriate values will be

saved and shown on the output graph, which ends this use case.

Measure A* Performance

Actors: User

Description: This use case begins when a user wants to use measure system

performance using the Swarming algorithm. The user selects appropriate

configuration (A* search and board size). The application will test the code and

inherit various testing methods from RSTM Library. Time will be measured, by

inheriting from the <time.h> library. Appropriate values will be saved and

shown on the output graph, which ends this use case.

Detailed Use Cases

Name: Measure Swarming Performance

Actors: User

Main Scenario

1. The use case begins when a new performance measurement, using the

Swarming algorithm, needs to be made.

2. The User selects “Measure Performance”.

3. User can browse through available algorithms and board size configurations,

which are shown on the screen.

4. User can select “Swarming” checkbox.

5. User can select size of the game-board from a drop-list.

6. The selected algorithm and board size are displayed in the screen.

7. User can change selected algorithm and board size before submitting.

8. When the configuration is ready, User can choose to confirm the selections,

and calculate the output.

7

9. Valid graph is shown on the screen, showing appropriate values, according to

the selected properties.

10. The use case ends when the user leaves the functionality.

Alternatives.

7a. When the user wants to measure performance under a different algorithm,

he can change by ticking the appropriate checkboxes.

Name: Measure Flocking Performance

Actors: User

Main Scenario

1. The use case begins when a new performance measurement, using the

Flocking algorithm, needs to be made.

2. The User selects “Measure Performance”.

3. User can browse through available algorithms and board size configurations,

which are shown on the screen.

4. User can select “Flocking” checkbox.

5. User can select size of the game-board from a drop-list.

6. The selected algorithm and board size are displayed in the screen.

7. User can change selected algorithm and board size before submitting.

8. When the configuration is ready, User can choose to confirm the selections,

and calculate the output.

9. Valid graph is shown on the screen, showing appropriate values, according to

the selected properties.

10. The use case ends when the user leaves the functionality.

Alternatives.

7a. When the user wants to measure performance under a different algorithm,

he can change by ticking the appropriate checkboxes.

8

Name: Measure A* Performance

Actors: User

Main Scenario

1. The use case begins when a new performance measurement, using the

Swarming algorithm, needs to be made.

2. The User selects “Measure Performance”.

3. User can browse through available algorithms and board size configurations,

which are shown on the screen.

4. User can select “A*” checkbox.

5. User can select size of the game-board from a drop-list.

6. The selected algorithm and board size are displayed in the screen.

7. User can change selected algorithm and board size before submitting.

8. When the configuration is ready, User can choose to confirm the selections,

and calculate the output.

9. Valid graph is shown on the screen, showing appropriate values, according to

the selected properties.

10. The use case ends when the user leaves the functionality.

Alternatives.

7a. When the user wants to measure performance under a different algorithm,

he can change by ticking the appropriate checkboxes.

9

6. Domain Model

Singleton class Behaviour Manager inherits behaviours from appropriate

algorithms (Flocking, Swarming, A* - using the RSTM library), and also from

Behaviour Manager Entity.

Singleton class Entity Manager inherits from Game and Entity class.

Time is taken from <time.h> library, and then passed to the Game class.

Board size is also passed to the Game class.

OPENMP will be used to run the Algorithms under different processor core

configurations.

Behaviour Manager class collects the data, and passes it on the output graph.

10

7. Layers

11

8. Communication

Communication between main application and its components is explained and

shown on diagrams below.

Diagram[1] shows communication between components when a measurement is requested

(using appropriate algorithm).

12

Diagram[2] shows communication between components when a time measurement is

requested.

Diagram[3] shows communication between components when a measurement is requested. to

run on multiple cores

