
[image:]
Institute of Technology, Carlow

B.Sc. (Honour) in Software Development

CW228
Design

Thread Pool Benchmarking

Name: Bowen Nong
Login ID: C00163585
Supervisor: Joseph Kehoe
[bookmark: _GoBack]Date: January 11th 2013

Contents
1.	Introduction	2
2.	Thread Pool	2
2.1.	Use Cases	2
2.1.1.	Use Cases Diagram	2
2.1.2.	Brief	3
2.2.	API	3
2.2.1.	Operator()	3
2.2.2.	Enqueue()	4
2.2.3.	TerminalAll()	5
2.3.	Domain Model	5
2.4.	System Sequence Diagram	6
2.4.1.	Create Thread	6
2.4.2.	Setup/Start	6
2.4.3.	Terminate Thread	7
2.5.	Tests	7
3.	Benchmarking in OpenMP	8
3.1.	OpenMP	8
3.1.1.	How Does It Schedule	8
3.1.2.	Simple Codes	9
3.2.	Benchmark Code	9
3.3.	Tests	11
3.3.1.	Flocking	11
3.3.2.	Swarming	13
3.3.3.	A* Search	15
3.3.4.	Performance VS Number of cores	15
3.3.5.	Performance VS Size of flock	15
4.	Conclusions	15
5.	Reference	16

1. [bookmark: _Toc345666798]Introduction

The threads were used to increase the speed of running programs. They allow the computer to work seen like doing job on the same time. Actuary, the CPU just allocate the work time for each thread. When the threads are created or killed by system, the CPU will give the sources and time. If each task needs to create a thread for working, it will waste lots of sources and time. However, on the other way, we created a group of threads for jobs. Then we do not kill the thread. When a thread finishes a task, it will “sleep” in the queue. According to the scheduling algorithms of threads, the thread goes out of queue for the new task. It will re-use the threads and save the time and sources. So the “box” which we use to create, kills and manages the group of threads is thread pool.

Thread pool is managed by the system, so that programmers do not need to spend time taking or cart thread management. And they can concentrate on application tasks. The threads are stored by priority.

According to this project, the thread pool schedule algorithms will be known, and which schedule algorithms are suitable in games. The timing metrics will be used in the project.

2. [bookmark: _Toc345666799]Thread Pool

2.1. [bookmark: _Toc345666800]Use Cases

2.1.1. [bookmark: _Toc345666801]Use Cases Diagram
[image:]

2.1.2. [bookmark: _Toc345666802]Brief

Name: Create Thread
Actor: User
Description: This case begins with a number of threads are created to perform a number of tasks, which are usually organized in a queue. The number of threads used is a parameter that can be tuned to provide the best performance. And there are many more tasks than threads.
Main Scenario:
1. The thread pool creates a group of threads in the thread pool which like a queue.
2. Each task is stored in the other queue.

Name: Setup/Start
Actor: User & Task
Description: This case begins after a group of threads are created in a queue. The results from the tasks being executed might also be placed in a queue. When a thread completes its task, it will request the next task from the queue until all tasks have been completed. The thread can be terminated, or sleep until there are new tasks available.
Main Scenario:
1. The thread runs the task.
2. The thread completed the task.
3. The thread input queue to wait next task.

Name: Terminate Thread
Actor: User
Description: This case begins after the number of tasks has been completed. The thread pool will delete the queue of threads and free the memory.
Main Scenario:
1. The thread pool finishes the tasks and kills the threads.

2.2. [bookmark: _Toc345666803]API
2.2.1. [bookmark: _Toc345666804]Operator()
The function operator() will take the threads working for tasks. It first locks the pool, then takes the threads for tasks and operates the task. If the pool is stopped, the operator also stopped.

[image:]

2.2.2. [bookmark: _Toc345666805]Enqueue()
The enqueue() function just locks the queue, adds a task to it and wakes up one thread in case any thread was suspended. And it is the threads running interface.
[image:]

2.2.3. [bookmark: _Toc345666806]TerminalAll()
[image:]
2.3. [bookmark: _Toc345666807]Domain Model
[image:]

2.4. [bookmark: _Toc345666808]System Sequence Diagram
2.4.1. [bookmark: _Toc345666809]Create Thread
[image:]
2.4.2. [bookmark: _Toc345666810]Setup/Start
[image:]
2.4.3. [bookmark: _Toc345666811]Terminate Thread
[image:]
2.5. [bookmark: _Toc345666812]Tests
[image:]Figure 1
Use the “Hello world” program to test the thread pool. The screenshot is a simple example of thread pool testing from internet. If it is successful, the control will show like follow Figure 2.

[image:]Figure 2
3. [bookmark: _Toc345666813]Benchmarking in OpenMP

3.1. [bookmark: _Toc345666814]OpenMP
3.1.1. [bookmark: _Toc341362465][bookmark: _Toc343245943][bookmark: _Toc345666815]How Does It Schedule
The OpenMP has three kinds of scheduling, which are dynamic, guided and static.
Static: all the threads are allocated iterations before they execute the loop iterations. The iterations are divided among threads equally by default. However, specifying an integer for the parameter chunk will allocate chunk number of contiguous iterations to a particular thread.
Dynamic: some of the iterations are allocated to a smaller number of threads. Once a particular thread finishes its allocated iteration, it returns to get another one from the iterations that are left. The parameter chunk defines the number of contiguous iterations that are allocated to a thread at a time.
Guided: A large chunk of contiguous iterations are allocated to each thread dynamically (as above). The chunk size decreases exponentially with each successive allocation to a minimum size specified in the parameter chunk.

3.1.2. [bookmark: _Toc341362466][bookmark: _Toc343245944][bookmark: _Toc345666816]Simple Codes
[image:]
There are 8 threads output like this:
[image:]
Example 3: it shows the simple “Hello World” code of OpenMP. [OpenMP]

3.2. [bookmark: _Toc345666817]Benchmark Code

FPS(Frames Per Second)
This is the benchmark code design.
timeGetTime()
It returns system time since windows started in milliseconds.

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
	//.h
#ifndef _TIME_H_
#define _TIME_H_

#pragma comment (lib,"Winmm.lib")

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <mmsystem.h>

class cTime
{
public:
	static cTime*	Instance();
	static void		Destroy();

	void	operator()();
	UINT64	GetDTime(){return mDTime;}

private:
	cTime();
	~cTime();

	static cTime *mInstance;
	UINT64 mLastGameTime;
	UINT64 mDTime;
};

#endif

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
	//.cpp
#include "Time.hpp"

cTime *cTime::mInstance	=	0;

cTime *cTime::Instance()
{
	if(mInstance)
		return mInstance;
	return mInstance = new cTime;
}

void cTime::Destroy()
{
	if(mInstance)
		delete mInstance;
}

cTime::cTime():
mDTime(0)
{
	mLastGameTime = (UINT64)timeGetTime();
}

cTime::~cTime(){}

void cTime::operator()()
{
	UINT64 ticks = (UINT64)timeGetTime();

	mDTime = ticks - mLastGameTime;

	mLastGameTime = ticks;
}

Example usage
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
	#include "time.h"
#include <iostream>
using namespace std;

void main()
{
	cTime &TimeRef = *cTime::Instance();

	TimeRef();
	// ... code to benchmark here ... //
	TimeRef();

	cout<<"Benchmark: "<<TimeRef.GetDTime();
}

The codes will get the time of goal algorithms.
3.3. [bookmark: _Toc345666818]Tests
3.3.1. [bookmark: _Toc345666819]Flocking
Decision-making: The Decision-making is the set of problems which are strategic, tactical and operational.
[image:]
Example 18: It is an Algorithm example of decision-making. It is Flocking algorithm. [GameAlgorithm]

Description:

There are four behavior rules in this algorithm. They are following:
(i) Separation: Steer to avoid crowding local flockmates. A boid should maintain certain distance from the nearby boids to avoid collisions with them.
(ii) Alignment: Steer towards the average heading of local flockmates. A boid should move in the same direction as the nearby boids and match its velocity accordingly.
(iii) Cohesion: Steer to move towards the average position of local flockmates. A boid should stay close to the nearby flockmates.
(iv) Avoidance: Steer to avoid running into local obstacles or enemies. A boid should escape dangers when they occur.
[image:]

3.3.2. [bookmark: _Toc345666820]Swarming
Swarm algorithms, which are based on flocking algorithms. It present another approach with multiple search traces. In swarm algorithms the members of the population ‘fly’ in the search space. Because of avoidance, they keep a minimum distance from each other and cover a larger area than a single search trace, and because they fly as a swarm, they tend to progress as a unit towards better solutions. As a way to escape local optima, the members can never slow down under a minimum velocity, which can allow them to fly past and free from local optimum, especially if it is crowded.

It implemented 2 classes: "Swarm" and "Boid". Swarm is used to hold pointers to all boids of a swarm but doesn't calculate much, movement happens in Boid. [image:]
This is the “swarm.h”.

[image:]
This is the “Boid.h”.
3.3.3. [bookmark: _Toc345666821]A* Search
A* uses a best-first search and finds a least-cost path from a given initial node to one goal node. Here is the algorithm displayed by pseudocode.
[image:]

Here is a more detailed look at how A-Star operates. The algorithm maintains two sets, the OPEN list and the CLOSED list. The OPEN list keeps track of those nodes that need to be examined, while the CLOSED list keeps track of nodes that have already been examined. Initially, the OPEN list contains just the initial node, and the CLOSED list is empty. Each node n maintains the following:

g(n) = the cost of getting from the initial node to n.
h(n) = the estimate, according to the heuristic function, of the cost of getting from n to the goal node.
f(n) = g(n) + h(n); intuitively, this is the estimate of the best solution that goes through n.
3.3.4. [bookmark: _Toc345666822]Performance VS Number of cores
It should performance the number of cores from 1 to n. And count the running time of program. The project should record those information and analysis them. Then giving the parsing diagram.

3.3.5. [bookmark: _Toc345666823]Performance VS Size of flock
It should performance the size of flocking from 1 to n. And count the running time of program. The project should record those information and analysis them. Then giving the parsing diagram.

4. [bookmark: _Toc345666824]Conclusions

A summary of thread pool benchmark, the project is simple designed. This project will use a thread pool that implements a number of these algorithms. It will need to develop a number of game algorithms benchmark programs that can be used to test these algorithms. The benchmarks will each represent a different type of concurrent problem. Finally, the algorithms will be tested with these benchmarks to compare the different algorithms performance. According to compare each using time, analysis which thread pool schedules are suitable.

5. [bookmark: _Toc345666825]Reference

[C++11] http://progsch.net/wordpress/?p=81
[Assess 24-10-2012]

[OpenMP] http://msdn.microsoft.com/en-us/magazine/cc163717.aspx
[Assess 24-10-2012]

[GameAlgorithm] Jouni Smed, Harri Hakonen, “Algorithms and Networking for Computer Games”, University of Turku, Finland, 2006

1

image2.png
User

Thread Pool

Create Thread

Setup/Start

task

image3.png
void Horker: :operator()()

{

std: :functioncvoid()> task;
while(true)

{

¥

7/ acquire lock
unique_lock<std: :mutex>
lock(pool. queue_mutex);

7/ ook for a work item

while(!pool.stop & pool.tasks.empty())

{ // if there are none wait for notification
pool. condition.wait(lock);

¥

if(pool.stop) // exit if the pool is stopped
return;

// get the task from the queue

task = pool.tasks.front();

pool. tasks.pop_front();

1/ release lock

// execute the task
task();

image4.png
// add new work item to the pool
template<class F>
void ThreadPoo:

enqueue(F f)

{ // acquire lock
std: :unique_lock<sty

nutexs lock(queue_mutex);

// add the task
‘tasks.push_back(std: : function<veid()>(f));
} // release lock

7/ wake up one thread
condition.notify_one();

image5.png
void TerminateAll)
t
forfint i=0;i < m_ThreadList,size();i++)
t
CWorkerThread” thr =
thr->Join();

Threaduistli:

returm;

image6.png
Thread

inHerit
WorkerThread Task
~priority do
ofn
ate marfage
o1
Worker ThreadPool
~threadpool manageb -workerQueue
-maxThreads ~topindex
-mutex ~bottomindex

-incompleteWork
-queueSize

image7.png
ThreadPool

User

createThreadPool()

image8.png
ThreadPool

User

interatipn

runf

image9.png
ThreadPool

User

TerminateAll

image10.png
ThreadPool pool(4);

std: :future<std: :string> str
pool. enqueue<std: :string>(

[8[6)
{

return “hello world";
¥
)5

std: :futurecint> x =
pool. enqueuecints(

[8[6)
{

return 42;
¥
)5

std::cout << str.get() <<
<< x.get() << std:

endl;

image11.png
£rom
£rom
£rom
£rom
£rom
£rom
£rom
f£rom

thread
thread
thread
thread
thread
thread
thread
thread

threads

image12.png
#include "stdafx.h”
#include <omp.h>
#includeciostream>
using namespace std;

Sint _tmain(int argc, _TCHAR® argv[])
{
int th_id, nthreads, i;
#pragna omp parallel private(th_id) shared(nthreads)
{
th_id = omp_get_thread_num();
#pragna omp critical
{
cout << "Hello World from thread " << th_id << "\n';
T

#pragna omp barrier

#pragna omp master

{
nthreads = omp_get_num_threads();
cout << "There are " << nthreads << " threads” << "\n';
i
i
getchar();
return 0;

image13.png
FLOCK(B, A)
in: set B of boids in a flock; set A of avoidable elements
out: updated set of boids R
constant: separation weight w,; alignment weight u,; cohesion weight 1 avoidance
weight w,; maximum velocity vy
local: st F of boids to be updated; boid f; updated boid b; acceleration vector
@ set V = visible(S, x) of clements from § visible to x

vhile F = 0 do > Update cach boid once.
4 f < aboid from F
F<F\f
V < visible(F UR, f)
a0
if V=0 or leader(B) = f then
realize an individual movement
else > There are visible flockmates.
@ < @+ w,- SEPARATION(V, f)
@ < @+ w, ALGNMENT(V, f)
@ < @+ we- COHESION(V, f)

end if
@ < @+ w,- AVOIDANCEGisible(A, f). /)
b < copy [> The boid is updated.
velocity(b) < velocity(b) + &
if [velocity (b)) > v,, then > Is velocity too high?
velocity(b) < vy UNIT-VECTOR(velocity(b))
end if
position(b) < position(b) + velocity(b)
R < RU{b)
23: end while

24: return R

image14.png
(a) (b)

© (d)

Figure 6.13 Steering behaviour rules: (a) Separation: Do not crowd flockmates. (b) Align-
ment: Move in the same direction as flockmates. (c) Cohesion: Stay close to flockmates.
(d) Avoidance: Avoid obstacles and enemies.

image15.png
#ifndef _SWARM_H__
#define _SWARM_H_
#include <vector>
#include "boid.h"

namespace Core {
class suarm {

public:
suarn();

~suarm() 3

bool move(float timeSincelastFrame);

bool addBoid(boid *thisBoid);

bool removeBoidByName(std: :string boidName);
bool writeAllBoidNames();

std: :vector<boid*> getFlockMates();

private
std: :vectorcboid*> Flock;
float timePassed;

#endif

image16.png
#ifndef __BOID H__
#define _BOTD_H_

#include "ogre.h”
#include <vector>
#include <stdlib.h>

namespace Core {

boid(ogre: :scenenode *thisNode, Ogre::stri

orientation, swarm *thisswarm);

boid(ogre: iNovableobject “thisdbject, ogre::string or fentation, suarn *chisSuarm);
~boid();

Vector3 getsoidposition()
vector3 getgoidvelocity();
string getsotcaneO):

(F1

bool ‘move(Float timesincelastrrame);
private:
swarm *Flockuates;

boidsize;

vector3 boidorientation;
sceneNode *boidNode;
tivector3 velocity;

image17.png
function At (start,goal)
Closedset := the empty set // The set of nodes alzeady evaluated.
penset := {start} // The set of tentative nodes to be evaluated, initially containing the start node
came_from := the empty map // The map of navigated nodes.

g_score[start] := 0 // Cost from start along best known path.
/7 Estimated total cost from start to goal through y.
£_score(start] := g_scors[start] + heuristic_cost_sstimate(start, goal)

while openset is not empty
curzent := the node in openset having the lowest £_scorel] value
if current = goal
zeturn reconstruct_path(came_from, goal)

zemove current from openset
add current to closedset
for each neighbor in neighbor_nodes (current)
if neignbor in closedset
continue
tentative_g_score

_score[current] + dist_between (current,neighbor)

if neighbor not in openset or tentative g score
came_from[neighbor] := current
_score(neighbor] := tentative g_score
£_score[neignbor] := g_score[neighbor] + heuristic_cost_estimate (neighbor, goal)
iT neighbor not in opemset
add neighbor to openset

g_score [neighbor]

zeturn failure

function reconstruct_path(came_from, current_node)
if came_from[current node] in set
b := reconstruct path(came from, came from[current_node])
return (p + currenc_node)
else

return current_node

image1.png
NSTITUTE of
| TecinoLocy

CARLOW

A the Heart o South Leinster

