
Design Document

SportsPA

Name: Gerard Dobbs

Student Number: C00196843

Course: Bachelor of Science (Hons) Software Development

Supervisor: Mr. Paul Barry

Date: 18/04/2018

SportsPA | Ger Dobbs

Table of Contents

Table of Contents 1

1. Introduction 2

2.Project Plan 3
2.1 Iteration 1 3

2.1.1 Iteration 1.1 3
2.1.2 Iteration 1.2 8
2.1.3 Iteration 1.3 13

2.2 Iteration 2 17
2.3 Iteration 3 26

3. References 29

1

SportsPA | Ger Dobbs

1. Introduction

This design document will detail the steps taken to achieve the goals specified for each
iteration. The specifications were supplied by the Client, Mr. Johnny Bradley, and agreed upon
with Paul Barry and myself. The specifications were supplied on an ongoing basis, making the
project fluid in its nature. Due to the fluidity of the project, each of the three overall iterations
were broken down into smaller ones. An XML file of events, supplied by the Client, was used
during the course of the project. This file was of a hockey international match between Ireland
and New Zealand.

The specification supplied, along with the tools, libraries and frameworks used to solve the
problem for each iteration will be explained. The overall specification of iteration 1 was to
produce a plot of each event that was recorded for each particular match. The iteration was
broken down into 3 smaller iterations.

The first of these mini Iterations is simply to produce a count of each recorded event in the xml
file.

The second mini iteration of Iteration 1 is to create a graph of the recorded events which would
show the timeline of when they were recorded.

The final mini Iteration of Iteration 1 was to prepare for playing the associated video. In order to
play the video JavaScript code would be needed. This code would need to be able to access
the start and end times of each event. In preparation for this an alert box will be displayed with
all the details of each event accessible upon clicking that event on the graph. This alert box will
be removed in Iteration 2.

Iteration 2 will involve the playing of an associated segment of video when the user clicks on a
recorded event depicted in the graph. Other functionality was added here to improve the user
experience.

Iteration 3 involves developing a web application and deploying it to Glasnost. This is an added
specification that will be provided to make the application accessible from anywhere and to
provide storage for the files.

2

SportsPA | Ger Dobbs

2.Project Plan

The project consists of three iterations of approximately six weeks in duration. The
specifications and requirements for each iteration will be provided by the client Johnny Bradley.
At the outset Johnny had a general idea of what the final product would look like. The overall,
and very general, requirement can be seen in Figure 2.3.

This project is very fluid in its nature in that specifications would be supplied as each stage is
completed. For that reason the first iteration was broken down into 3 smaller iterations.

After each iteration is completed, the result will be presented to the client for approval or
otherwise. Any changes to be made or extra functionality required will be documented
accordingly.

2.1 Iteration 1

Iteration 1 is broken down into three smaller iterations.

2.1.1 Iteration 1.1
The Specification supplied by Johnny Bradley, for iteration 1.1, was to be able to view a count of
each recorded event. To achieve this the relevant XML file needed to be imported and parsed
into a format suitable for generating the plot. The python library ElementTree would be used to
achieve this and a graph of the counts produced.

The format of the XML files produced, when events are recorded, can be seen in Figure 2.1.1.1.
In the supplied file, there were 623 similar instances displayed.

3

SportsPA | Ger Dobbs

Figure 2.1.1.1

The tag <ID> would not be needed throughout the project. The <start> and <end> tags are
recordings of the start and end times of each event. These times are given in seconds. The
<code> tag holds the name of the recorded events. These names would have been coded by
students using GameBreaker, or similar software to record events. For this stage of the project,
the clients specifications stated the the <label> tag and its child tags would not be used.

The recorded events are decided by the sports student. These may vary from match to match.
For instance, in Figure 2.1.1.1, the student has decided that in this hockey match ‘FRA A25’ are
events worth analysing. If it were a rugby match, it might be decided ‘FRA Scrum’ could be
significant events.

A decision was made, when using ElementTree, to parse the XML file into many different
python formats. Due to the fluid nature of this project, it was unclear what future requirements
would include and consequently what formats would be needed. Therefore, by parsing the data
into different lists, dictionary and sets, It was hoped that we would not have to return to this
process during a subsequent iteration.

Having parsed the XML file into more usable formats, we could achieve the goal of this iteration
which was to produce counts of each recorded events. To display the counts in a user friendly
format the python Bokeh library would be used to create a graph. This library had been
researched for the initial project idea as it was the most suitable library for producing real time
interactive visualizations. It was decided to proceed with this library as we were unsure of future
requirements and felt Bokeh would be able to meet any needs identified further into the project.
Therefore it would be used to complete iteration 1.1, and display a graph of the event counts.

The python Bokeh library, which was chosen to display the graph, would need the data supplied
to it to be in a pythonic format such as lists, sets or dicts. This was achieved by using
ElementTree, which uses a hierarchical structure.

The first task would be to access the root of the tree. All instances, as shown in the example in
Figure 2.1.1.1, are children of the <ALL_INSTANCES> tag. The root of the tree <file> and its
immediate children, including <ALL_INSTANCES>, can be seen in Figure 2.1.1.2. Accessing
<ALL_INSTANCES>, through the root of the tree, would then allow all other child tags to be
accessed throughout the project.

4

SportsPA | Ger Dobbs

Figure 2.1.1.2

The code to extract the <ALL_INSTANCES> tag, and its children is shown in Figure 2.1.1.3.

Figure 2.1.1.3

Having accessed <ALL_INSTANCES>, it would then be possible to access any child tags. Due
to the fluid nature of the project, it was decided to extract the data into different lists, sets and
dicts. This was done so that as specifications were changed or added, any data required would
be available in one of these formats.

The codes, start times and end times would be put into a list of dicts, and also into their own
dictionaries, sets and lists.

Figure 2.1.1.4

All the codes, start times and end times were extracted first in the order that they were recorded
and therefore as they appear in the XML file. They were then grouped together so that the lists
could be used as data for the graphs to be produced.

5

SportsPA | Ger Dobbs

The number of distinctive code types would also be needed for the graph. In the example used
there were 38 separate codes. This would give the graph a height of 38 hbars on the y-axis. The
first codes in the graph are ‘IRE Build Up’, as can be seen in ‘all codes’ in Figure 2.1.1.5. The
‘IRE Build Up’ would be displayed along the x-axis at a height of on the y-axis. The next row of
codes would be would then be displayed at a height of 39. To achieve this the data for the
graph plot would include a list of heights for each hbar. This is shown in the ‘all counts’ list of
Figure 2.1.1.5.

Figure 2.1.1.5

In order to produce a graph of the number of each code, the list of all codes was iterated over
and a new dictionary produced. The code to achieve is shown in Figure 2.1.1.6. A sample of the
resulting dictionary is shown in Figure 2.1.1.7

Figure 2.1.1.6

The code in Figure 2.1.1.6 loops through the XML file to find each code and puts it into a list of
codes, if it has not already appeared in the xml file. Otherwise it loops through the file and
counts the occurrences of that code. This produces a dictionary of each code and how many
times each code appears, as shown in Figure 2.1.1.7.

Figure 2.1.1.7

This satisfied the requirements specified at the start of this iteration. However, in order to
produce the results in a more readable format, I produced a graph of the codes versus the count
of each code. The codes for the x-axis, and the counts for the y axis of the graph were extracted
from the dictionary, as shown in Figure 2.1.1.8.

6

SportsPA | Ger Dobbs

Figure 2.1.1.8.

The code to plot the graph can be seen in Figure 2.1.1.9

.
Figure 2.1.1.9.

The resulting graph is shown in Figure 2.1.1.10.

Figure 2.1.1.10.

7

SportsPA | Ger Dobbs

2.1.2 Iteration 1.2

The specification of Iteration 1.2 entailed producing a graph which would include each recorded
event. This would be similar to that of the SportsCode Elite software, which can be seen in
Figure 2.1.2.1.

Figure 2.1.2.1.

Figure 2.1.2.1 displays the recorded events, including the start and end times. The codes can
be seen on the y-axis. The x-axis is the timeline of the recorded match. Each bar in the graph
represents a code, with the start of the bar being the start time of that recorded event and the
end of the bar the end time. The next requirement, as part of iteration 1, was to reproduce a
similar graph. The python Bokeh library was used in conjunction with the parsed XML file to
meet this specification.

In order to achieve this requirement I used the Bokeh python library, which is described in the
research document. Having upskilled myself in the use of Bokeh, I decided to use the rect
glyph. This glyph is created by getting the centre point of the required rect, on both axes, and
then using height and width to display the glyph. The centre point on the y-axis would
correspond to the code, while the centre point on the x-axis would be the time halfway between
the start and end time.

A function would be used to get the centre points as shown in figure 2.1.2.2, and a new list
created.

Figure 2.1.2.2

8

SportsPA | Ger Dobbs

The data frame ColumnDataSource is used to provide this data to Bokeh for plotting the graph.
The necessary python lists, created previously would be supplied to this data frame as shown
in Figure 2.1.2.3.

Figure 2.1.2.3

An example of the data supplied can be seen in Figure 2.1.2.4. The ‘left’ values supplied for the
start of each hbar, on the x-axis, are the start times of each event. The ‘x’ values supplied to the
end of each hbar are the end times. The ‘y’ values are represented by the number of distinctive
coded events. In the example file used, the number of events is 38. This means all the first
group of similar codes will be plotted first at 38 on the y-axis. The next group of codes will then
be at 37 and so on. The final list supplied are the actual codes used for plotting.

Figure 2.1.2.4

It was known at this stage that the lists produced in the previous iteration would have to be
updated in order to create the graph. In plotting the graph rects would be used to represent
each event, which would be represented on each row of the graph. The graph would be built
from the top down. The top, and first row, would show all the events of the first event stored in
the XML file. This means that if ‘IRE Poss’ was the first event in the XML file then all ‘IRE Poss’
events would be shown in this row. Similarly the next event in the XML file, which has not
already been graphed, would be shown in the 2nd row down, and so forth.

This layout for the graph means that the lists will have to be rearranged. All the ‘IRE Poss’
events previously stored in a list as they were recorded would have to be moved to the
beginning of the list and similarly with the next event.

This would also have to be done for the ‘start’ and ‘end’ times. All the ‘start’ times for ‘IRE Poss’
would be moved to the start of that list. These times would be represented on the x-axis. The
‘start’ time would show the start of each hbar and the ‘end’ time the end of that bar.

The plot which would contain the graph of the hbars is then created. This was achieved as
shown in Figure 2.1.2.5.

9

SportsPA | Ger Dobbs

Figure 2.1.2.5

The next step is to create the rects and add them to the plot. This is achieved by creating a
columnDataSource which contains all the data needed to create the graph. The ‘data’ variable
contains all the necessary lists. A columnDataSource data frame is the created of this data and
assigned to the variable ‘source. This can be seen in Figure 2.1.2.6.

Figure 2.1.2.6

The rect glyphs are then created and inserted onto the plot using the data frame which was
assigned to the source variable.

As part of this iteration a further requirement was to colour code the events. As the sample XML
file used was a hockey match between Ireland and New Zealand, the colours used were Lime
and black. Lime was used as the graph background would be green. Any event not associated
with either team would be coloured white.

In preparation for this second specification, to colour code the teams, a list of corresponding
colours would need to be generated. The python function, shown in Figure 2.1.2.8 creates the
data to achieve this.

10

SportsPA | Ger Dobbs

 Figure 2.1.2.8

This produces a list of colours, ordered as described earlier for the codes and times.The list
produced to achieve the color coding can be seen in Figure 2.1.2.9.

 Figure 2.1.2.9.

As can be seen from Figure 2.1.2.9, the colours are grouped together in the list. This is because
all list elements are grouped as they appear in the graph. Therefore when a new element
appears this represents a new row in the graph. The ‘Lime’ grouping shown above represents
the first row of the graph which was an event relating to Ireland.

The elements in the ‘code’, ‘start’ and ‘end’ lists were grouped similarly. The result was the
specified graph using hbar’s to display each event. The graph displayed each event and the
start and end times of when each event occurred. A section of the resulting graph is shown in
Figure 2.1.2.10, with the full graph shown in Figure 2.1.2.11.

Figure 2.1.2.10.

11

SportsPA | Ger Dobbs

Having consulted with Johnny it was decided that the teams should be grouped together also.
This again involved rearranging the lists used in the ColumnDataSource. The result is shown in
Figure 2.1.2.11.

Figure 2.1.2.7

2.1.3 Iteration 1.3

The next requirement agreed upon was to make each bar clickable.The requirements specified
the ability to be able to click on a hbar to play the relevant video segment. This ability to be able
to click a hbar and produce an alert box was used as preparation for the next iteration. The
alert box displayed the start and end times of that particular event. These times would be
needed to start and end the video at the required video segment. The alert box would be
removed in iteration 2

On commencing this requirement I discovered that using the rect glyph would not be the most
suitable, for making the hbars clickable. I then had to change the code to use the hbar glyph in
order to successfully complete this iteration. In order to make each bar clickable I used the
Bokeh Tap Tool. This tool required implementing a ‘CustomJS’ callback function. This function
was coded in JavaScript to display an alert box which would show details of the event, the start
and end times, and the team associated with the event. The event code, start time and end time
will be used in iteration 2 to play the associated video clip. During this iteration I also added a
Bokeh Hover Tooltip, which was created using HTML.

12

SportsPA | Ger Dobbs

The first task carried out was to include a Bokeh Taptool. The Taptool would be used to interact
with the hbars. Once a hbar is clicked, the goal, in this iteration, is to display the start and end
times in an alert box. The TapTool was first added to the plot, as shown in Figure 2.1.3.1.

Figure 2.1.3.1

The callback function named callback is used to display the alert Box. This function can be seen
in Figure 2.1.3.2.

Figure 2.1.3.2

The callback function uses CustomJs in order to allow javaScript to be used to display the alert
box. The data used to generate the plot, which is stored in a ColumnDataSource object source,
is passed into the callback function as a parameter. This allows the javaScript access the data.
The other parameter is the javaScript code used.
In the Javascript code in Figure 2.1.3.2, the relevant data relating to the clicked hbar is assigned
to the variable ‘selected’. The individual selected data elements are then each assigned to their
own variables. An example of this is ‘selected_left’, which will hold the left side of the hbar. This

13

SportsPA | Ger Dobbs

‘selected_left’ is the start time of the video. These values are then displayed in the alert box, as
shown in Figure 2.1.3.3.

Figure 2.1.3.3

Extra specifications provided in this iteration were tools to be used in the graph. These tools
included a pan tool, select tools and zoom tools. A hover tool producing tooltips was also
included. This hover tool displayed details of the event, including the coded event name, the
start and end times, the total count of that event in the file and the location of that event. This
extra specification would prove very beneficial for graphs with a lot of events, where it would be
difficult to read graph details.

Other Bokeh tools were then added, as can be seen in Figure 2.1.3.4. Thes tools were added
above the graph on the right hand side as seen in Figure 2.1.3.5.

Figure 2.1.3.4

14

SportsPA | Ger Dobbs

Figure 2.1.3.5

The tools must be activated by clicking on them first. In Figure 2.1.3.5, the first two tools,
BoxZoomTool() and TapTool have been activated.

The ResetTool() is used to reset the graph after other tools have been used on it. For example,
when the TapTool is used it dims out the graph except for the clicked hbar. The ResetTool() will
then reset the graph.

The other tool that was coded using javaScript was the hoverTool, which would display a tooltip.
This tool would be very beneficial in viewing the data for each event before clicking. The
javaScript code for the hoverTool can be seen in Figure 2.1.3.6. To access the data ‘@’ is used
before the name of the data element.

Figure 2.1.3.6

Figure 2.1.3.7 and Figure 2.1.3.8 show the tooltip displayed when the cursor hovers over an
event.

Figure 2.1.3.7

15

SportsPA | Ger Dobbs

Figure 2.1.3.8

This completed all requirements supplied at the beginning, and during, iteration 1.3. The results
were displayed to Johnny Bradley, who was extremely delighted with the results, particularly the
extra requirements which were not available in previous software.

2.2 Iteration 2

Iteration 2 involves the ability to use the graphs hbars to play the associated segment of the
relevant video. Research was carried out into different options available to satisfy this need. I
looked at openCv and MoviePy in python and also the html5 video tag. Along with the research
carried out I also spent some time experimenting with the 3 options. In the end i decided to go
with the html5 video tag. The main reason for this was because I could use a CustomJS
callback function to select the start and end points in order to play the relevant video section. I
had upskilled and gained some knowledge in using this function while displaying the alert box in
the previous iteration.

In Iteration 1.2 I had used an alert box to display the data that would be needed in this iteration.
Having been able to access this data I no longer needed the alert box.

16

SportsPA | Ger Dobbs

The first task was to create a div to contain the video tag. This can be seen in Figure 2.2.1.

Figure 2.2.1

The most challenging part in this iteration was the ability to pass the python video file into the
html tag. This proved an even bigger challenge than I originally anticipated. That is until I
discovered Literal String Interpolation, also known as f-strings. F-strings are available since
python 3.6 and they provide a way to embed expressions inside string literals[1]. As can be
seen from Figure 2.2.1, f-strings allowed me to embed the python video file into the html5 video
tag.

Having include the video tag, the next goal was the ability to play sections of it, when a hbar
was clicked. As stated earlier this would be by using the Bokeh tap tool. This tap tool uses a
CustomJS callback function and the video needs to be passed into that function as seen in
Figure 2.2.2.

Figure 2.2.2

The callback function calls a CustomJS function called ‘display_event()’. The first parameter
passed to this function is ‘div’. We can see from Figure 2.2.1 that div includes the video tag. On
the click of a hbar this function is then called. The signature of this function can be seen in
Figure 2.2.3.

Figure 2.2.3

The display event function will retrieve the relevant data associated with the click. The first thing
the function does, as seen in Figure 2.2.4, is to assign the columnDataSource passed to
variable ‘data’. This data includes all the lists used in plotting the graph

17

SportsPA | Ger Dobbs

Figure 2.2.4

When a click event occurs the corresponding elements in the data lists will be retrieved. This is
achieved using the code in Figure 2.2.5.

Figure 2.2.5

If we look at line 349 in Figure 2.2.4, as an example, we see that the function assigns the
selected element in the in the ‘left’ list to variable selected_left. The ‘left’ list contains the left of
each hbar and subsequently the start time of that event. Therefore ‘selected_left’ represents the
start time of the selected event to be played. Similarly the other details of the event are
retrieved.

The start and end times need to be converted to seconds in order to play the video from the
right place. This is done using the code in Figure 2.2.6.

Figure 2.2.6

Variables ‘start’ and ‘end’ now represent the video segment we want to play, according to the
button click. The video is played using the code segment in Figure 2.2.7.

18

SportsPA | Ger Dobbs

Figure 2.2.7

In the code in Figure 2.2.7, after the video has been started an eventListener is used to check if
the ‘end’ time has been reached, in order to stop playing.

This fulfilled the requirements outlined by Johnny at the start of this iteration, and again he was
very pleased with the outcome. It was then decided that some data from the XML file, not used
up to this point should be displayed. These tags were called ‘Labels’ and contained child tags,
but not every event contained ‘Labels’.

Again I had to extract this data and put it into lists to include in the columnDataSource. The data
would be displayed in the resulting html page beside the video. It was also decided to display all
relevant data here also. Div’s were created to display the data and the empty div’s were passed
as arguments into the ‘display-events’ function as seen in Figure 2.2.3. The code in Figure 2.2.8
is used to display the data.

Figure 2.2.8

It was proposed to Johnny that in order to provide better usability to the end user that another
option to play the video could be added. Looking at it from a non user viewpoint, it was
proposed to add other means to play the video. This would include dropdowns to select and
play an event, as well as a replay button. The idea behind adding these was to provide different
options and an improved user experience. The graph contains a lot of hbars, as in the case of
the sample XML provided which had 628 events and therefore 628 hbars. Finding certain
events in the graph could prove difficult. Allied to this is the fact that some events are quiet short
and therefore can be hard to click. The added functionality gives a much friendlier and faster
means to find some events.This proposal was greeted with enthusiasm by Johnny.

The first dropdown box would include a list of all the exclusive coded events. The user would
select an event from that dropdown and then the second dropdown would populate with the
times available for that event only. Again this meant creating more lists of data.

19

SportsPA | Ger Dobbs

This proved quiet time consuming as I ran into some difficulties along the way.

After doing some research I decided to use the Bokeh server to update the dropdown. I created
the dropdowns as shown in Figure 2.2.9.

Figure 2.2.9

This was done firstly in a separate file and python code was used to update the ‘Times’
dropdown. After successfully getting it to run I introduced the code into my main file. It was at
this stage that I realised, that using the Bokeh Server was causing issues when playing the
video. Solving this was proving very problematic and time consuming already. It was decided to
abandon this approach before any more time was lost.

The second approach taken was to update the dropdown on the client side using the DOM. This
was proving fruitful, however in my haste to make up lost time, I failed to notice there were
issues. The ‘Times’ dropdown was updating successfully on selection of an event in the ‘Codes’
dropdown. However, on selection of a time in the ‘Times’ dropdown the times in this dropdown
were reverting to the original default values. It was as if the browser was refreshing on selection
in the dropdown. Again I spent time trying to solve this issue, before deciding to take a different
approach.

The third approach taken was to again use CustomJs. I had considered this approach originally
but did not use it as I foresaw an issue with passing the data from the dropdown into the
function. I sought assistance online but to no avail. As has been the case throughout this project
the Bokeh docs support was not up to date. Similar problems had been raised but the solutions
were outdated. I persevered in finding a solution and eventually found a way to achieve what i
needed. One short line of code, as shown in Figure 2.2.10 was my saviour.

Figure 2.2.10

The CustomJs function to update the ‘Times’ dropdown is shown in Figure 2.2.11.

20

SportsPA | Ger Dobbs

Figure 2.2.10

The CustomJs function to play the video on selection of a time from the ‘Times, dropdown is
similar to that shown in Figure 2.2.5 and subsequently explained.

Another suggestion made was to provide a replay button. This button would allow the user to
replay the last event or to return to the start of the current event while it is being played. This
would provide a better experience for the user as they would not have to search for the event
again if further analysis was needed or if something was missed. The code for the callback
function used for this button is shown in Figure 2.2.11.

Figure 2.2.11

In this function, the data to be used is retrieved from the displayed data relating to the event
already started or played.

Another functionality added in this iteration was to colour code the background. This would be
used instead of colour coding the hbars. Different shades of the background would be used for
codes belonging to each team and also neutral codes. The first task was to identify the dividing
points along the y-axis for the colour change. This was done by using the code in Figure 2.2.12.

21

SportsPA | Ger Dobbs

Figure 2.2.12

The variables ‘top_lower’ and ‘bottom_higher’ identify the points on the y-axis where the
background colour changes. These variables are then used in Bokeh Box Annotations, which
are used to create bands on Bokeh plots, as shown in Figure 2.2.13.

Figure 2.2.13

A title identifying the names of the teams involved was also added. The team names were taken
from the title of the XML file as shown in Figure 2.2.14.

Figure 2.2.14

This code extracts the title and team names. The team names were extracted in order to use a
different colour for each team in the title. Bokeh Text was used to display the title, as shown in
Figure 2.2.15, and was added to the plot as shown in Figure 2.2.16.

22

SportsPA | Ger Dobbs

Figure 2.2.15

Figure 2.2.16

The names of each event were also added to the plot along the y-axis. Bokeh Text was again
used to achieve this. A list of the codes was iterated over and a Bokeh Text created starting
from the top of the plot. An offset, determining where the Text is positioned, was increased as
each Text was positioned. The code to achieve this is seen in Figure 2.2.17.

Figure 2.2.17

The resulting graph can be seen in Figure 2.2.18, and the overall output is shown in Figure
2.2.19.

23

SportsPA | Ger Dobbs

Figure 2.2.18

Figure 2.2.19

This completed iteration 2. Again the result was shown to Johnny Bradley, with a very positive
response.

24

SportsPA | Ger Dobbs

2.3 Iteration 3

Having completed the core functionality, Iteration 3 involved creating a web application. This
web application would allow an administrator, such as Johnny Bradley to upload videos and Xml
files. A user would then be able to select files to analyse.

It was decided to use Flask to develop the web application. I had thought about using Django.
The reason I used Flask was because I had used it in my third year project and wanted to get
even more experience in its use.

The first page to be created is the home page. This is where students would select the mp4 and
xml files to do their analysis. There would be no need for students to log into an account to do
this. They would be presented with 2 dropdowns from which they could select the files. A tab on
this page would bring an administrator to a login page. Bootstrap was used for styling the web
application.

The dropdown boxes would be populated with the files previously uploaded by an administrator.
When the user navigates to the home page it calls the function shown in Figure 2.3.1.

Figure 2.3.1

This function gets all the mp4 and xml files stored in their respective folders and puts them into
2 lists. The html page is then rendered and the 2 lists passed to it as arguments.

The html page then creates 2 dropdown boxes and a play button. The dropdown boxes are
populated from the lists passed in as arguments. An example of how this is achieved for one
dropdown is shown in Figure 2.3.2.

25

SportsPA | Ger Dobbs

Figure 2.3.2.

As can be seen, the list of xml files is looped through in order to populate the dropdown box.
When the selections have been made and the play button clicked, the form goes to the ‘play’
function, as seen in Figure 2.3.3.

Figure 2.3.3.

It is this function which then carries out the parsing of the data, the creation of the plot and
allows the user to select what event, and subsequently what segment of video to play.

The home page also allows an administrator to go to a login page. Logging in allows the
administrator to upload mp4 and xml videos. A successful login will bring the user to the upload
page. The route for the upload page can be seen in Figure 2.3.4.

26

SportsPA | Ger Dobbs

Figure 2.3.4

The files that are already loaded are first displayed on the page. This is done to inform the user
if they are trying to upload a previously uploaded file. The function then gets a list of the files
selected for upload. It checks the file extensions in order to decide which folder they are stored
in and are then stored in their respective folders.

The administrator will also have the option of deleting files after login. This is achieved by
selecting the delete tab. The administrator is presented with a dropdown list of all the stored
files which can be deleted. Figure 2.3.5 shows the code for displaying the available files for
deletion.

27

SportsPA | Ger Dobbs

Figure 2.3.5

The delete() function searches the xml and video folders for files stored in them and puts them
into to lists. The lists are then passed as parameters in a render_template function as seen in
Figure 2.3.6.

Figure 2.3.6

This will then display the html page with a dropdown containing all the files available for
download. The html code to achieve this can be seen in Figure 2.3.7. The code loops through
both lists to populate a drop down box with the files.

Figure 2.3.7

The administrator then selects a file for deletion and clicks delete. The selected file is passed to
the delete() function to variable ‘file_select’, as can be seen in Figure 2.3.8.

28

SportsPA | Ger Dobbs

Figure 2.3.8

The extension of the file is checked in order to get the correct path to the file to be deleted. This
sets the ‘delete_path’. The selected file is then removed and deleted. If an error occurs the
administrator is informed, as can be seen in Figure 2.3.9.

Figure 2.3.9

3. References

Reference:
[1] ​https://www.python.org/dev/peps/pep-0498/

29

https://www.python.org/dev/peps/pep-0498/

